» Articles » PMID: 36646905

Remodeling of Maternal MRNA Through Poly(A) Tail Orchestrates Human Oocyte-to-embryo Transition

Overview
Date 2023 Jan 16
PMID 36646905
Authors
Affiliations
Soon will be listed here.
Abstract

Poly(A)-tail-mediated post-transcriptional regulation of maternal mRNAs is vital in the oocyte-to-embryo transition (OET). Nothing is known about poly(A) tail dynamics during the human OET. Here, we show that poly(A) tail length and internal non-A residues are highly dynamic during the human OET, using poly(A)-inclusive RNA isoform sequencing (PAIso-seq). Unexpectedly, maternal mRNAs undergo global remodeling: after deadenylation or partial degradation into 3'-UTRs, they are re-polyadenylated to produce polyadenylated degradation intermediates, coinciding with massive incorporation of non-A residues, particularly internal long consecutive U residues, into the newly synthesized poly(A) tails. Moreover, TUT4 and TUT7 contribute to the incorporation of these U residues, BTG4-mediated deadenylation produces substrates for maternal mRNA re-polyadenylation, and TENT4A and TENT4B incorporate internal G residues. The maternal mRNA remodeling is further confirmed using PAIso-seq2. Importantly, maternal mRNA remodeling is essential for the first cleavage of human embryos. Together, these findings broaden our understanding of the post-transcriptional regulation of maternal mRNAs during the human OET.

Citing Articles

Comprehensive analysis of poly(A) tails in mouse testes and ovaries using Nanopore Direct RNA Sequencing.

Czarnocka-Cieciura A, Brouze M, Guminska N, Mroczek S, Gewartowska O, Krawczyk P Sci Data. 2025; 12(1):43.

PMID: 39794363 PMC: 11724052. DOI: 10.1038/s41597-024-04226-8.


MARTRE family proteins negatively regulate CCR4-NOT activity to protect poly(A) tail length and promote translation of maternal mRNA.

Yang J, Bu J, Liu B, Liu Y, Zhang Z, Li Z Nat Commun. 2025; 16(1):248.

PMID: 39747175 PMC: 11696134. DOI: 10.1038/s41467-024-55610-2.


PATL2 mutations affect human oocyte maternal mRNA homeostasis and protein interactions in cell cycle regulation.

Zhang Y, Hu Z, Jiang H, Jin J, Zhou Y, Lai M Cell Biosci. 2024; 14(1):157.

PMID: 39741299 PMC: 11686847. DOI: 10.1186/s13578-024-01341-2.


The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus.

Kojima M, Hoppe C, Giraldez A Nat Rev Genet. 2024; .

PMID: 39587307 DOI: 10.1038/s41576-024-00792-0.


The impact of retrotransposons on zygotic genome activation and the chromatin landscape of early embryos.

Solberg T, Kobayashi-Ishihara M, Siomi H Ann N Y Acad Sci. 2024; 1542(1):11-24.

PMID: 39576233 PMC: 11668504. DOI: 10.1111/nyas.15260.


References
1.
Schultz R, Stein P, Svoboda P . The oocyte-to-embryo transition in mouse: past, present, and future. Biol Reprod. 2018; 99(1):160-174. PMC: 6044405. DOI: 10.1093/biolre/ioy013. View

2.
Du Z, Zhang K, Xie W . Epigenetic Reprogramming in Early Animal Development. Cold Spring Harb Perspect Biol. 2021; 14(6). PMC: 9248830. DOI: 10.1101/cshperspect.a039677. View

3.
Robertson S, Lin R . The oocyte-to-embryo transition. Adv Exp Med Biol. 2012; 757:351-72. DOI: 10.1007/978-1-4614-4015-4_12. View

4.
Svoboda P, Franke V, Schultz R . Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse. Curr Top Dev Biol. 2015; 113:305-49. DOI: 10.1016/bs.ctdb.2015.06.004. View

5.
Clegg K, PIKO L . Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+ RNA in early mouse embryos. Dev Biol. 1983; 95(2):331-41. DOI: 10.1016/0012-1606(83)90034-9. View