» Articles » PMID: 36641510

Tailoring Crosstalk Between Localized 1D Spin-wave Nanochannels Using Focused Ion Beams

Overview
Journal Sci Rep
Specialty Science
Date 2023 Jan 14
PMID 36641510
Authors
Affiliations
Soon will be listed here.
Abstract

1D spin-wave conduits are envisioned as nanoscale components of magnonics-based logic and computing schemes for future generation electronics. À-la-carte methods of versatile control of the local magnetization dynamics in such nanochannels are highly desired for efficient steering of the spin waves in magnonic devices. Here, we present a study of localized dynamical modes in 1-[Formula: see text]m-wide permalloy conduits probed by microresonator ferromagnetic resonance technique. We clearly observe the lowest-energy edge mode in the microstrip after its edges were finely trimmed by means of focused Ne[Formula: see text] ion irradiation. Furthermore, after milling the microstrip along its long axis by focused ion beams, creating consecutively [Formula: see text]50 and [Formula: see text]100 nm gaps, additional resonances emerge and are attributed to modes localized at the inner edges of the separated strips. To visualize the mode distribution, spatially resolved Brillouin light scattering microscopy was used showing an excellent agreement with the ferromagnetic resonance data and confirming the mode localization at the outer/inner edges of the strips depending on the magnitude of the applied magnetic field. Micromagnetic simulations confirm that the lowest-energy modes are localized within [Formula: see text]15-nm-wide regions at the edges of the strips and their frequencies can be tuned in a wide range (up to 5 GHz) by changing the magnetostatic coupling (i.e., spatial separation) between the microstrips.

Citing Articles

Fabrication of fluidic submicron-channels by pulsed laser-induced buckling of SiO films on fused silica.

Bakhtiari N, Ihlemann J Discov Nano. 2024; 19(1):46.

PMID: 38485854 PMC: 10940550. DOI: 10.1186/s11671-024-03987-w.


Tailoring crosstalk between localized 1D spin-wave nanochannels using focused ion beams.

Iurchuk V, Pablo-Navarro J, Hula T, Narkowicz R, Hlawacek G, Korber L Sci Rep. 2023; 13(1):764.

PMID: 36641510 PMC: 9840641. DOI: 10.1038/s41598-022-27249-w.

References
1.
Garcia-Sanchez F, Borys P, Soucaille R, Adam J, Stamps R, Kim J . Narrow Magnonic Waveguides Based on Domain Walls. Phys Rev Lett. 2015; 114(24):247206. DOI: 10.1103/PhysRevLett.114.247206. View

2.
Krawczyk M, Grundler D . Review and prospects of magnonic crystals and devices with reprogrammable band structure. J Phys Condens Matter. 2014; 26(12):123202. DOI: 10.1088/0953-8984/26/12/123202. View

3.
Iurchuk V, Pablo-Navarro J, Hula T, Narkowicz R, Hlawacek G, Korber L . Tailoring crosstalk between localized 1D spin-wave nanochannels using focused ion beams. Sci Rep. 2023; 13(1):764. PMC: 9840641. DOI: 10.1038/s41598-022-27249-w. View

4.
Lenz K, Narkowicz R, Wagner K, Reiche C, Korner J, Schneider T . Magnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotube. Small. 2019; 15(49):e1904315. DOI: 10.1002/smll.201904315. View

5.
Lara A, Moreno J, Guslienko K, Aliev F . Information processing in patterned magnetic nanostructures with edge spin waves. Sci Rep. 2017; 7(1):5597. PMC: 5514091. DOI: 10.1038/s41598-017-05737-8. View