» Articles » PMID: 36633283

Ribosomal Incorporation of Negatively Charged D-α- and -methyl-l-α-amino Acids Enhanced by EF-Sep

Overview
Specialty Biology
Date 2023 Jan 12
PMID 36633283
Authors
Affiliations
Soon will be listed here.
Abstract

Ribosomal incorporation of d-α-amino acids (dAA) and -methyl-l-α-amino acids (AA) with negatively charged sidechains, such as d-Asp, d-Glu, Asp and Glu, into nascent peptides is far more inefficient compared to those with neutral or positively charged ones. This is because of low binding affinity of their aminoacyl-transfer RNA (tRNA) to elongation factor-thermo unstable (EF-Tu), a translation factor responsible for accommodation of aminoacyl-tRNA onto ribosome. It is well known that EF-Tu binds to two parts of aminoacyl-tRNA, the amino acid moiety and the T-stem; however, the amino acid binding pocket of EF-Tu bearing Glu and Asp causes electric repulsion against the negatively charged amino acid charged on tRNA. To circumvent this issue, here we adopted two strategies: (i) use of an EF-Tu variant, called EF-Sep, in which the Glu216 and Asp217 residues in EF-Tu are substituted with Asn216 and Gly217, respectively; and (ii) reinforcement of the T-stem affinity using an artificially developed chimeric tRNA, tRNA, whose T-stem is derived from tRNA that has high affinity to EF-Tu. Consequently, we could successfully enhance the incorporation efficiencies of d-Asp, d-Glu, Asp and Glu and demonstrated for the first time, to our knowledge, ribosomal synthesis of macrocyclic peptides containing multiple d-Asp or Asp. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.

Citing Articles

Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets.

Colas K, Bindl D, Suga H Chem Rev. 2024; 124(21):12213-12241.

PMID: 39451037 PMC: 11565579. DOI: 10.1021/acs.chemrev.4c00422.


Reaching New Heights in Genetic Code Manipulation with High Throughput Screening.

Lino B, Williams S, Castor M, Van Deventer J Chem Rev. 2024; 124(21):12145-12175.

PMID: 39418482 PMC: 11879460. DOI: 10.1021/acs.chemrev.4c00329.


Tuning tRNAs for improved translation.

Weiss J, Decker J, Bolano A, Krahn N Front Genet. 2024; 15:1436860.

PMID: 38983271 PMC: 11231383. DOI: 10.3389/fgene.2024.1436860.


β-Amino Acids Reduce Ternary Complex Stability and Alter the Translation Elongation Mechanism.

Cruz-Navarrete F, Griffin W, Chan Y, Martin M, Alejo J, Brady R ACS Cent Sci. 2024; 10(6):1262-1275.

PMID: 38947208 PMC: 11212133. DOI: 10.1021/acscentsci.4c00314.


In Vitro Selection of Macrocyclic l-α/d-α/β/γ-Hybrid Peptides Targeting IFN-γ/IFNGR1 Protein-Protein Interaction.

Miura T, Lee K, Katoh T, Suga H J Am Chem Soc. 2024; 146(26):17691-17699.

PMID: 38888290 PMC: 11229689. DOI: 10.1021/jacs.4c01979.


References
1.
Katoh T, Iwane Y, Suga H . Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation. Nucleic Acids Res. 2017; 45(22):12601-12610. PMC: 5728406. DOI: 10.1093/nar/gkx1129. View

2.
Uhlenbeck O, Schrader J . Evolutionary tuning impacts the design of bacterial tRNAs for the incorporation of unnatural amino acids by ribosomes. Curr Opin Chem Biol. 2018; 46:138-145. PMC: 6601615. DOI: 10.1016/j.cbpa.2018.07.016. View

3.
Merryman C, Green R . Transformation of aminoacyl tRNAs for the in vitro selection of "drug-like" molecules. Chem Biol. 2004; 11(4):575-82. DOI: 10.1016/j.chembiol.2004.03.009. View

4.
Fan C, Ip K, Soll D . Expanding the genetic code of Escherichia coli with phosphotyrosine. FEBS Lett. 2016; 590(17):3040-7. PMC: 5014711. DOI: 10.1002/1873-3468.12333. View

5.
Subtelny A, Hartman M, Szostak J . Ribosomal synthesis of N-methyl peptides. J Am Chem Soc. 2008; 130(19):6131-6. PMC: 2728122. DOI: 10.1021/ja710016v. View