» Articles » PMID: 36631741

Mapping the Iceberg of Autonomic Recovery: Mechanistic Underpinnings of Neuromodulation Following Spinal Cord Injury

Overview
Journal Neuroscientist
Publisher Sage Publications
Specialty Neurology
Date 2023 Jan 11
PMID 36631741
Authors
Affiliations
Soon will be listed here.
Abstract

Spinal cord injury leads to disruption in autonomic control resulting in cardiovascular, bowel, and lower urinary tract dysfunctions, all of which significantly reduce health-related quality of life. Although spinal cord stimulation shows promise for promoting autonomic recovery, the underlying mechanisms are unclear. Based on current preclinical and clinical evidence, this narrative review provides the most plausible mechanisms underlying the effects of spinal cord stimulation for autonomic recovery, including activation of the somatoautonomic reflex and induction of neuroplastic changes in the spinal cord. Areas where evidence is limited are highlighted in an effort to guide the scientific community to further explore these mechanisms and advance the clinical translation of spinal cord stimulation for autonomic recovery.

Citing Articles

Short- and long-term effects of transcutaneous spinal cord stimulation on autonomic cardiovascular control and arm-crank exercise capacity in individuals with a spinal cord injury (STIMEX-SCI): study protocol.

Hodgkiss D, Balthazaar S, Welch J, Wadley A, Cox P, Lucas R BMJ Open. 2025; 15(1):e089756.

PMID: 39819908 PMC: 11751795. DOI: 10.1136/bmjopen-2024-089756.


Neuromodulation in Spinal Cord Injury Using Transcutaneous Spinal Stimulation-Mapping for a Blood Pressure Response: A Case Series.

Engel-Haber E, Bheemreddy A, Bayram M, Ravi M, Zhang F, Su H Neurotrauma Rep. 2024; 5(1):845-856.

PMID: 39391052 PMC: 11462428. DOI: 10.1089/neur.2024.0066.


Ergogenic effects of spinal cord stimulation on exercise performance following spinal cord injury.

Hodgkiss D, Williams A, Shackleton C, Samejima S, Balthazaar S, Lam T Front Neurosci. 2024; 18:1435716.

PMID: 39268039 PMC: 11390595. DOI: 10.3389/fnins.2024.1435716.


Web-Based Information on Spinal Cord Stimulation: Qualitative Assessment of Publicly Accessible Online Resources.

Miller T, Hosseinzadeh A, Thordarson T, Kalimullina T, Samejima S, Shackleton C JMIR Public Health Surveill. 2024; 10:e50031.

PMID: 38393781 PMC: 10924266. DOI: 10.2196/50031.


Autonomic dysreflexia in urological practice: pathophysiology, prevention and treatment considerations.

Calderon-Juarez M, Samejima S, Rempel L, Sachdeva R, Krassioukov A World J Urol. 2024; 42(1):80.

PMID: 38358540 DOI: 10.1007/s00345-024-04781-0.


References
1.
Anderson K . Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2005; 21(10):1371-83. DOI: 10.1089/neu.2004.21.1371. View

2.
Browning K, Travagli R . Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014; 4(4):1339-68. PMC: 4858318. DOI: 10.1002/cphy.c130055. View

3.
Squair J, Gautier M, Mahe L, Soriano J, Rowald A, Bichat A . Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature. 2021; 590(7845):308-314. DOI: 10.1038/s41586-020-03180-w. View

4.
Sato A, Sato Y, Schmidt R . The impact of somatosensory input on autonomic functions. Rev Physiol Biochem Pharmacol. 1997; 130:1-328. View

5.
Sachdeva R, Nightingale T, Pawar K, Kalimullina T, Mesa A, Marwaha A . Noninvasive Neuroprosthesis Promotes Cardiovascular Recovery After Spinal Cord Injury. Neurotherapeutics. 2021; 18(2):1244-1256. PMC: 8423970. DOI: 10.1007/s13311-021-01034-5. View