» Articles » PMID: 36629253

Translation Initiation of Leaderless and Polycistronic Transcripts in Mammalian Mitochondria

Abstract

The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.

Citing Articles

Selection of initiator tRNA and start codon by mammalian mitochondrial initiation factor 3 in leaderless mRNA translation.

Lee M, Wakigawa T, Jia Q, Liu C, Huang R, Huang S Nucleic Acids Res. 2025; 53(3).

PMID: 39878211 PMC: 11775629. DOI: 10.1093/nar/gkaf021.


Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis.

Liu L, Shao M, Huang Y, Qian P, Huang H J Hematol Oncol. 2024; 17(1):95.

PMID: 39396039 PMC: 11470598. DOI: 10.1186/s13045-024-01615-9.


The human mitochondrial mRNA structurome reveals mechanisms of gene expression.

Moran J, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A Science. 2024; 385(6706):eadm9238.

PMID: 39024447 PMC: 11510358. DOI: 10.1126/science.adm9238.


Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis.

Antolinez-Fernandez A, Esteban-Ramos P, Fernandez-Moreno M, Clemente P Front Cell Dev Biol. 2024; 12:1410245.

PMID: 38855161 PMC: 11157125. DOI: 10.3389/fcell.2024.1410245.


Central dogma rates in human mitochondria.

McShane E, Churchman L Hum Mol Genet. 2024; 33(R1):R34-R41.

PMID: 38779776 PMC: 11112385. DOI: 10.1093/hmg/ddae036.


References
1.
Huber M, Faure G, Laass S, Kolbe E, Seitz K, Wehrheim C . Translational coupling via termination-reinitiation in archaea and bacteria. Nat Commun. 2019; 10(1):4006. PMC: 6728339. DOI: 10.1038/s41467-019-11999-9. View

2.
Ritchie M, Phipson B, Wu D, Hu Y, Law C, Shi W . limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47. PMC: 4402510. DOI: 10.1093/nar/gkv007. View

3.
Lee M, Matsunaga N, Akabane S, Yasuda I, Ueda T, Takeuchi-Tomita N . Reconstitution of mammalian mitochondrial translation system capable of correct initiation and long polypeptide synthesis from leaderless mRNA. Nucleic Acids Res. 2020; 49(1):371-382. PMC: 7797035. DOI: 10.1093/nar/gkaa1165. View

4.
Bruni F, Proctor-Kent Y, Lightowlers R, Chrzanowska-Lightowlers Z . Messenger RNA delivery to mitoribosomes - hints from a bacterial toxin. FEBS J. 2020; 288(2):437-451. PMC: 7891357. DOI: 10.1111/febs.15342. View

5.
Christian B, Spremulli L . Evidence for an active role of IF3mt in the initiation of translation in mammalian mitochondria. Biochemistry. 2009; 48(15):3269-78. PMC: 3711378. DOI: 10.1021/bi8023493. View