6.
Stauch A, Duerr H, Dujardin J, Vanaerschot M, Sundar S, Eichner M
. Treatment of visceral leishmaniasis: model-based analyses on the spread of antimony-resistant L. donovani in Bihar, India. PLoS Negl Trop Dis. 2013; 6(12):e1973.
PMC: 3527335.
DOI: 10.1371/journal.pntd.0001973.
View
7.
Contreras L, Neme R, Ramirez M
. Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expr Purif. 2015; 115:26-33.
DOI: 10.1016/j.pep.2015.08.022.
View
8.
Contreras Rodriguez L, Ziegler M, Ramirez Hernandez M
. Kinetic and oligomeric study of nicotinate/nicotinamide mononucleotide adenylyltransferase. Heliyon. 2020; 6(4):e03733.
PMC: 7160426.
DOI: 10.1016/j.heliyon.2020.e03733.
View
9.
Yang J, Zhang Y
. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015; 43(W1):W174-81.
PMC: 4489253.
DOI: 10.1093/nar/gkv342.
View
10.
Bustamante C, Ochoa R, Asela C, Muskus C
. Repurposing of known drugs for leishmaniasis treatment using bioinformatic predictions, in vitro validations and pharmacokinetic simulations. J Comput Aided Mol Des. 2019; 33(9):845-854.
DOI: 10.1007/s10822-019-00230-y.
View
11.
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J, Dror R
. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010; 78(8):1950-8.
PMC: 2970904.
DOI: 10.1002/prot.22711.
View
12.
Zhai R, Rizzi M, Garavaglia S
. Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Cell Mol Life Sci. 2009; 66(17):2805-18.
PMC: 11115848.
DOI: 10.1007/s00018-009-0047-x.
View
13.
Ortiz-Joya L, Contreras-Rodriguez L, Ramirez-Hernandez M
. Protein-protein interactions of the nicotinamide/nicotinate mononucleotide adenylyltransferase of Leishmania braziliensis. Mem Inst Oswaldo Cruz. 2019; 114:e180506.
PMC: 6430020.
DOI: 10.1590/0074-02760180506.
View
14.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E
. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12.
DOI: 10.1002/jcc.20084.
View
15.
Rodionova I, Zuccola H, Sorci L, Aleshin A, Kazanov M, Ma C
. Mycobacterial nicotinate mononucleotide adenylyltransferase: structure, mechanism, and implications for drug discovery. J Biol Chem. 2015; 290(12):7693-706.
PMC: 4367272.
DOI: 10.1074/jbc.M114.628016.
View
16.
Zhang C, Freddolino P, Freddolino L, Zhang Y
. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res. 2017; 45(W1):W291-W299.
PMC: 5793808.
DOI: 10.1093/nar/gkx366.
View
17.
Ochoa R, Watowich S, Florez A, Mesa C, Robledo S, Muskus C
. Drug search for leishmaniasis: a virtual screening approach by grid computing. J Comput Aided Mol Des. 2016; 30(7):541-52.
DOI: 10.1007/s10822-016-9921-4.
View
18.
Balducci E, Emanuelli M, Raffaelli N, Ruggieri S, Amici A, Magni G
. Assay methods for nicotinamide mononucleotide adenylyltransferase of wide applicability. Anal Biochem. 1995; 228(1):64-8.
DOI: 10.1006/abio.1995.1315.
View
19.
Blom N, Gammeltoft S, Brunak S
. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999; 294(5):1351-62.
DOI: 10.1006/jmbi.1999.3310.
View
20.
Yang J, Roy A, Zhang Y
. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013; 29(20):2588-95.
PMC: 3789548.
DOI: 10.1093/bioinformatics/btt447.
View