6.
Tangermann M, Muller K, Aertsen A, Birbaumer N, Braun C, Brunner C
. Review of the BCI Competition IV. Front Neurosci. 2012; 6:55.
PMC: 3396284.
DOI: 10.3389/fnins.2012.00055.
View
7.
Pfurtscheller G, Lopes da Silva F
. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999; 110(11):1842-57.
DOI: 10.1016/s1388-2457(99)00141-8.
View
8.
Schirrmeister R, Springenberg J, Fiederer L, Glasstetter M, Eggensperger K, Tangermann M
. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp. 2017; 38(11):5391-5420.
PMC: 5655781.
DOI: 10.1002/hbm.23730.
View
9.
Chu Y, Zhao X, Zou Y, Xu W, Song G, Han J
. Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression. J Neural Eng. 2020; 17(4):046029.
DOI: 10.1088/1741-2552/aba7cd.
View
10.
Yong X, Menon C
. EEG classification of different imaginary movements within the same limb. PLoS One. 2015; 10(4):e0121896.
PMC: 4382224.
DOI: 10.1371/journal.pone.0121896.
View
11.
Ang K, Chin Z, Wang C, Guan C, Zhang H
. Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b. Front Neurosci. 2012; 6:39.
PMC: 3314883.
DOI: 10.3389/fnins.2012.00039.
View
12.
Gramfort A, Luessi M, Larson E, Engemann D, Strohmeier D, Brodbeck C
. MEG and EEG data analysis with MNE-Python. Front Neurosci. 2014; 7:267.
PMC: 3872725.
DOI: 10.3389/fnins.2013.00267.
View
13.
Rashid M, Sulaiman N, P P Abdul Majeed A, Musa R, Ab Nasir A, Bari B
. Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Front Neurorobot. 2020; 14:25.
PMC: 7283463.
DOI: 10.3389/fnbot.2020.00025.
View
14.
Padfield N, Zabalza J, Zhao H, Masero V, Ren J
. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges. Sensors (Basel). 2019; 19(6).
PMC: 6471241.
DOI: 10.3390/s19061423.
View
15.
He Y, Eguren D, Azorin J, Grossman R, Luu T, L Contreras-Vidal J
. Brain-machine interfaces for controlling lower-limb powered robotic systems. J Neural Eng. 2018; 15(2):021004.
DOI: 10.1088/1741-2552/aaa8c0.
View
16.
Geng T, Gan J, Dyson M, Tsui C, Sepulveda F
. A novel design of 4-class BCI using two binary classifiers and parallel mental tasks. Comput Intell Neurosci. 2008; :437306.
PMC: 2435224.
DOI: 10.1155/2008/437306.
View
17.
Edelman B, Baxter B, He B
. EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks. IEEE Trans Biomed Eng. 2015; 63(1):4-14.
PMC: 4716869.
DOI: 10.1109/TBME.2015.2467312.
View
18.
Li Y, Guo L, Liu Y, Liu J, Meng F
. A Temporal-Spectral-Based Squeeze-and- Excitation Feature Fusion Network for Motor Imagery EEG Decoding. IEEE Trans Neural Syst Rehabil Eng. 2021; 29:1534-1545.
DOI: 10.1109/TNSRE.2021.3099908.
View
19.
Bashashati H, Ward R, Bashashati A
. User-customized brain computer interfaces using Bayesian optimization. J Neural Eng. 2016; 13(2):026001.
DOI: 10.1088/1741-2560/13/2/026001.
View
20.
Demir A, Koike-Akino T, Wang Y, Haruna M, Erdogmus D
. EEG-GNN: Graph Neural Networks for Classification of Electroencephalogram (EEG) Signals. Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021:1061-1067.
DOI: 10.1109/EMBC46164.2021.9630194.
View