» Articles » PMID: 30909489

EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2019 Mar 27
PMID 30909489
Citations 83
Authors
Affiliations
Soon will be listed here.
Abstract

Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs.

Citing Articles

Paradigms and methods of noninvasive brain-computer interfaces in motor or communication assistance and rehabilitation: a systematic review.

Meng J, Wei Y, Mai X, Li S, Wang X, Luo R Med Biol Eng Comput. 2025; .

PMID: 40059266 DOI: 10.1007/s11517-025-03340-y.


MSEI-ENet: A Multi-Scale EEG-Inception Integrated Encoder Network for Motor Imagery EEG Decoding.

Wu P, Fei K, Chen B, Pan L Brain Sci. 2025; 15(2).

PMID: 40002462 PMC: 11853029. DOI: 10.3390/brainsci15020129.


Response coupling with an auxiliary neural signal for enhancing brain signal detection.

Gupta E, Sivakumar R Sci Rep. 2025; 15(1):6227.

PMID: 39979351 PMC: 11842634. DOI: 10.1038/s41598-025-87414-9.


Brain-Computer Interfaces for Upper Limb Motor Recovery after Stroke: Current Status and Development Prospects (Review).

Mokienko O, Lyukmanov R, Bobrov P, Suponeva N, Piradov M Sovrem Tekhnologii Med. 2025; 15(6):63-73.

PMID: 39944367 PMC: 11811833. DOI: 10.17691/stm2023.15.6.07.


Stochasticity as a solution for overfitting-A new model and comparative study on non-invasive EEG prospects.

Radwan Y, Ahmed Mohamed E, Metwalli D, Barakat M, Ahmed A, Kiroles A Front Hum Neurosci. 2025; 19:1484470.

PMID: 39925722 PMC: 11802819. DOI: 10.3389/fnhum.2025.1484470.


References
1.
Yu T, Xiao J, Wang F, Zhang R, Gu Z, Cichocki A . Enhanced Motor Imagery Training Using a Hybrid BCI With Feedback. IEEE Trans Biomed Eng. 2015; 62(7):1706-17. DOI: 10.1109/TBME.2015.2402283. View

2.
Athanasiou A, Xygonakis I, Pandria N, Kartsidis P, Arfaras G, Kavazidi K . Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms. Biomed Res Int. 2017; 2017:5708937. PMC: 5602625. DOI: 10.1155/2017/5708937. View

3.
Scherer R, Faller J, Friedrich E, Opisso E, Costa U, Kubler A . Individually adapted imagery improves brain-computer interface performance in end-users with disability. PLoS One. 2015; 10(5):e0123727. PMC: 4436356. DOI: 10.1371/journal.pone.0123727. View

4.
Nauck D, Kruse R . Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med. 1999; 16(2):149-69. DOI: 10.1016/s0933-3657(98)00070-0. View

5.
Alam S, Bhuiyan M . Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J Biomed Health Inform. 2013; 17(2):312-8. DOI: 10.1109/JBHI.2012.2237409. View