» Articles » PMID: 36562722

CCSynergy: an Integrative Deep-learning Framework Enabling Context-aware Prediction of Anti-cancer Drug Synergy

Overview
Journal Brief Bioinform
Specialty Biology
Date 2022 Dec 23
PMID 36562722
Authors
Affiliations
Soon will be listed here.
Abstract

Combination therapy is a promising strategy for confronting the complexity of cancer. However, experimental exploration of the vast space of potential drug combinations is costly and unfeasible. Therefore, computational methods for predicting drug synergy are much needed for narrowing down this space, especially when examining new cellular contexts. Here, we thus introduce CCSynergy, a flexible, context aware and integrative deep-learning framework that we have established to unleash the potential of the Chemical Checker extended drug bioactivity profiles for the purpose of drug synergy prediction. We have shown that CCSynergy enables predictions of superior accuracy, remarkable robustness and improved context generalizability as compared to the state-of-the-art methods in the field. Having established the potential of CCSynergy for generating experimentally validated predictions, we next exhaustively explored the untested drug combination space. This resulted in a compendium of potentially synergistic drug combinations on hundreds of cancer cell lines, which can guide future experimental screens.

Citing Articles

SAFER: sub-hypergraph attention-based neural network for predicting effective responses to dose combinations.

Tang Y, Li R, Tang J, Zheng W, Jiang X BMC Bioinformatics. 2024; 25(1):250.

PMID: 39080535 PMC: 11290087. DOI: 10.1186/s12859-024-05873-9.


DKPE-GraphSYN: a drug synergy prediction model based on joint dual kernel density estimation and positional encoding for graph representation.

Dong Y, Bai Y, Liu H, Yang Z, Chang Y, Li J Front Genet. 2024; 15:1401544.

PMID: 38948360 PMC: 11211516. DOI: 10.3389/fgene.2024.1401544.


SAFER: sub-hypergraph attention-based neural network for predicting effective responses to dose combinations.

Tang Y, Li R, Tang J, Zheng W, Jiang X Res Sq. 2024; .

PMID: 38746131 PMC: 11092851. DOI: 10.21203/rs.3.rs-4308618/v1.


PermuteDDS: a permutable feature fusion network for drug-drug synergy prediction.

Zhao X, Xu J, Shui Y, Xu M, Hu J, Liu X J Cheminform. 2024; 16(1):41.

PMID: 38622663 PMC: 11017561. DOI: 10.1186/s13321-024-00839-8.


CancerGPT for few shot drug pair synergy prediction using large pretrained language models.

Li T, Shetty S, Kamath A, Jaiswal A, Jiang X, Ding Y NPJ Digit Med. 2024; 7(1):40.

PMID: 38374445 PMC: 10876664. DOI: 10.1038/s41746-024-01024-9.


References
1.
Pacini C, Dempster J, Boyle I, Goncalves E, Najgebauer H, Karakoc E . Integrated cross-study datasets of genetic dependencies in cancer. Nat Commun. 2021; 12(1):1661. PMC: 7955067. DOI: 10.1038/s41467-021-21898-7. View

2.
Lee J, Kim D, Bae T, Rho K, Kim J, Lee J . CDA: combinatorial drug discovery using transcriptional response modules. PLoS One. 2012; 7(8):e42573. PMC: 3414439. DOI: 10.1371/journal.pone.0042573. View

3.
Yang M, Jaaks P, Dry J, Garnett M, Menden M, Saez-Rodriguez J . Stratification and prediction of drug synergy based on target functional similarity. NPJ Syst Biol Appl. 2020; 6(1):16. PMC: 7265486. DOI: 10.1038/s41540-020-0136-x. View

4.
Huang L, Brunell D, Stephan C, Mancuso J, Yu X, He B . Driver network as a biomarker: systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction. Bioinformatics. 2019; 35(19):3709-3717. PMC: 6761967. DOI: 10.1093/bioinformatics/btz109. View

5.
Hopkins A . Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008; 4(11):682-90. DOI: 10.1038/nchembio.118. View