» Articles » PMID: 36555505

A Decade of CRISPR-Cas Gnome Editing in

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 Dec 23
PMID 36555505
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR-Cas allows us to introduce desired genome editing, including mutations, epitopes, and deletions, with unprecedented efficiency. The development of CRISPR-Cas has progressed to such an extent that it is now applicable in various fields, with the help of model organisms. is one of the pioneering animals in which numerous CRISPR-Cas strategies have been rapidly established over the past decade. Ironically, the emergence of numerous methods makes the choice of the correct method difficult. Choosing an appropriate selection or screening approach is the first step in planning a genome modification. This report summarizes the key features and applications of CRISPR-Cas methods using , illustrating key strategies. Our overview of significant advances in CRISPR-Cas will help readers understand the current advances in genome editing and navigate various methods of CRISPR-Cas genome editing.

Citing Articles

A dominant co-transformation marker using CRISPR/Cas9 and a linear repair template in .

Bobinski M, Pilgrim D MicroPubl Biol. 2023; 2023.

PMID: 38021174 PMC: 10656624. DOI: 10.17912/micropub.biology.000900.

References
1.
Renaud J, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E . Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. Cell Rep. 2016; 14(9):2263-2272. DOI: 10.1016/j.celrep.2016.02.018. View

2.
Fischer F, Benner C, Goyala A, Grigolon G, Vitiello D, Wu J . Ingestion of single guide RNAs induces gene overexpression and extends lifespan in Caenorhabditis elegans via CRISPR activation. J Biol Chem. 2022; 298(7):102085. PMC: 9243178. DOI: 10.1016/j.jbc.2022.102085. View

3.
Yan W, Hunnewell P, Alfonse L, Carte J, Keston-Smith E, Sothiselvam S . Functionally diverse type V CRISPR-Cas systems. Science. 2018; 363(6422):88-91. PMC: 11258546. DOI: 10.1126/science.aav7271. View

4.
Waaijers S, Portegijs V, Kerver J, Lemmens B, Tijsterman M, van den Heuvel S . CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans. Genetics. 2013; 195(3):1187-91. PMC: 3813849. DOI: 10.1534/genetics.113.156299. View

5.
Yu Y, Guo Y, Tian Q, Lan Y, Yeh H, Zhang M . An efficient gene knock-in strategy using 5'-modified double-stranded DNA donors with short homology arms. Nat Chem Biol. 2019; 16(4):387-390. PMC: 7085973. DOI: 10.1038/s41589-019-0432-1. View