» Articles » PMID: 36548304

Ubiquitin Variants Potently Inhibit SARS-CoV-2 PLpro and Viral Replication Via a Novel Site Distal to the Protease Active Site

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle. Additionally, PLpro can cleave both ubiquitin and the ubiquitin-like protein ISG15 from host cell substrates as a mechanism to evade innate immune responses during infection. These roles make PLpro an attractive antiviral drug target. Here we demonstrate that ubiquitin variants (UbVs) can be selected from a phage-displayed library and used to specifically and potently block SARS-CoV-2 PLpro activity. A crystal structure of SARS-CoV-2 PLpro in complex with a representative UbV reveals a dimeric UbV bound to PLpro at a site distal to the catalytic site. Yet, the UbV inhibits the essential cleavage activities of the protease in vitro and in cells, and it reduces viral replication in cell culture by almost five orders of magnitude.

Citing Articles

Analysis of Structures of SARS-CoV-2 Papain-like Protease Bound with Ligands Unveils Structural Features for Inhibiting the Enzyme.

Varghese A, Liu J, Liu B, Guo W, Dong F, Patterson T Molecules. 2025; 30(3).

PMID: 39942596 PMC: 11820935. DOI: 10.3390/molecules30030491.


Suppressing Tymovirus replication in plants using a variant of ubiquitin.

De Silva A, Kim K, Weiland J, Hwang J, Chung J, Pereira H PLoS Pathog. 2025; 21(1):e1012899.

PMID: 39869641 PMC: 11819560. DOI: 10.1371/journal.ppat.1012899.


Native Mass Spectrometry Reveals Binding Interactions of SARS-CoV-2 PLpro with Inhibitors and Cellular Targets.

James V, Godula R, Perez J, Beckham J, Butalewicz J, Sipe S ACS Infect Dis. 2024; 10(10):3597-3606.

PMID: 39303064 PMC: 11533220. DOI: 10.1021/acsinfecdis.4c00444.


Preclinical and Clinical Investigations of Potential Drugs and Vaccines for COVID-19 Therapy: A Comprehensive Review With Recent Update.

Mia M, Howlader M, Akter F, Hossain M Clin Pathol. 2024; 17:2632010X241263054.

PMID: 39070952 PMC: 11282570. DOI: 10.1177/2632010X241263054.


Viral deubiquitinating proteases and the promising strategies of their inhibition.

van Vliet V, De Silva A, Mark B, Kikkert M Virus Res. 2024; 344:199368.

PMID: 38588924 PMC: 11025011. DOI: 10.1016/j.virusres.2024.199368.


References
1.
Hassan A, Case J, Winkler E, Thackray L, Kafai N, Bailey A . A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell. 2020; 182(3):744-753.e4. PMC: 7284254. DOI: 10.1016/j.cell.2020.06.011. View

2.
Wassenaar A, Spaan W, Gorbalenya A, Snijder E . Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. J Virol. 1997; 71(12):9313-22. PMC: 230234. DOI: 10.1128/JVI.71.12.9313-9322.1997. View

3.
Gao X, Qin B, Chen P, Zhu K, Hou P, Wojdyla J . Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm Sin B. 2020; 11(1):237-245. PMC: 7467110. DOI: 10.1016/j.apsb.2020.08.014. View

4.
Zhang W, Wu K, Sartori M, Kamadurai H, Ordureau A, Jiang C . System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes. Mol Cell. 2016; 62(1):121-36. PMC: 4988125. DOI: 10.1016/j.molcel.2016.02.005. View

5.
Motyan J, Mahdi M, Hoffka G, Tozser J . Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Int J Mol Sci. 2022; 23(7). PMC: 8998604. DOI: 10.3390/ijms23073507. View