» Articles » PMID: 36548051

Supramolecular Semiconductivity Through Emerging Ionic Gates in Ion-Nanoparticle Superlattices

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2022 Dec 22
PMID 36548051
Authors
Affiliations
Soon will be listed here.
Abstract

The self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with features and properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice. As a case study, we focus on gold nanoparticles bearing positively charged groups that self-assemble into FCC crystals mediation by citrate counterions. ohmic experiments show how the dynamically diverse behavior of the ions in different superlattice domains allows the opening of conductive ionic gates above certain levels of applied electric fields. The observed binary conductive/nonconductive behavior is reminiscent of that of conventional semiconductors, while, at a supramolecular level, crossing the "band gap" requires a sufficient electrostatic stimulus to break the intermolecular interactions and make ions diffuse throughout the superlattice's cavities.

Citing Articles

Classification and spatiotemporal correlation of dominant fluctuations in complex dynamical systems.

Caruso C, Crippa M, Cardellini A, Cioni M, Perrone M, Delle Piane M PNAS Nexus. 2025; 4(2):pgaf038.

PMID: 39967681 PMC: 11833705. DOI: 10.1093/pnasnexus/pgaf038.


Layer-by-layer unsupervised clustering of statistically relevant fluctuations in noisy time-series data of complex dynamical systems.

Becchi M, Fantolino F, Pavan G Proc Natl Acad Sci U S A. 2024; 121(33):e2403771121.

PMID: 39110730 PMC: 11331080. DOI: 10.1073/pnas.2403771121.


Detecting dynamic domains and local fluctuations in complex molecular systems via timelapse neighbors shuffling.

Crippa M, Cardellini A, Caruso C, Pavan G Proc Natl Acad Sci U S A. 2023; 120(30):e2300565120.

PMID: 37467266 PMC: 10372573. DOI: 10.1073/pnas.2300565120.


Colloidal superionic conductors.

Lin Y, Olvera de la Cruz M Proc Natl Acad Sci U S A. 2023; 120(15):e2300257120.

PMID: 37018200 PMC: 10104562. DOI: 10.1073/pnas.2300257120.


Photocleavable Anionic Glues for Light-Responsive Nanoparticle Aggregates.

Wang J, Peled T, Klajn R J Am Chem Soc. 2023; .

PMID: 36757850 PMC: 9951211. DOI: 10.1021/jacs.2c11973.


References
1.
Wang S, Du J, Diercks N, Zhou W, Roth E, Dravid V . Colloidal Crystal "Alloys". J Am Chem Soc. 2019; 141(51):20443-20450. DOI: 10.1021/jacs.9b11109. View

2.
Walter M, Akola J, Lopez-Acevedo O, Jadzinsky P, Calero G, Ackerson C . A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci U S A. 2008; 105(27):9157-62. PMC: 2442568. DOI: 10.1073/pnas.0801001105. View

3.
Meng G, Arkus N, Brenner M, Manoharan V . The free-energy landscape of clusters of attractive hard spheres. Science. 2010; 327(5965):560-3. DOI: 10.1126/science.1181263. View

4.
Kalsin A, Kowalczyk B, Smoukov S, Klajn R, Grzybowski B . Ionic-like behavior of oppositely charged nanoparticles. J Am Chem Soc. 2006; 128(47):15046-7. DOI: 10.1021/ja0642966. View

5.
Yan Y, Warren S, Fuller P, Grzybowski B . Chemoelectronic circuits based on metal nanoparticles. Nat Nanotechnol. 2016; 11(7):603-8. DOI: 10.1038/nnano.2016.39. View