» Articles » PMID: 36521841

Ion-Induced Transient Potential Fluctuations Facilitate Pore Formation and Cation Transport Through Lipid Membranes

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2022 Dec 15
PMID 36521841
Authors
Affiliations
Soon will be listed here.
Abstract

Unassisted ion transport through lipid membranes plays a crucial role in many cell functions without which life would not be possible, yet the precise mechanism behind the process remains unknown due to its molecular complexity. Here, we demonstrate a direct link between membrane potential fluctuations and divalent ion transport. High-throughput wide-field non-resonant second harmonic (SH) microscopy of membrane water shows that membrane potential fluctuations are universally found in lipid bilayer systems. Molecular dynamics simulations reveal that such variations in membrane potential reduce the free energy cost of transient pore formation and increase the ion flux across an open pore. These transient pores can act as conduits for ion transport, which we SH image for a series of divalent cations (Cu, Ca, Ba, Mg) passing through giant unilamellar vesicle (GUV) membranes. Combining the experimental and computational results, we show that permeation through pores formed via an ion-induced electrostatic field is a viable mechanism for unassisted ion transport.

Citing Articles

How pore formation in complex biological membranes is governed by lipid composition, mechanics, and lateral sorting.

Starke L, Allolio C, Hub J PNAS Nexus. 2025; 4(3):pgaf033.

PMID: 40046002 PMC: 11879431. DOI: 10.1093/pnasnexus/pgaf033.


Interleaflet Translocation of Second-Harmonic-Generation-Active Dye Molecules in Phospholipid Bilayers with Transmembrane Pores.

Shigematsu T, Shinoda Y, Takagi R, Ujihara Y, Sugita S, Nakamura M Langmuir. 2025; 41(5):3209-3219.

PMID: 39875332 PMC: 11823627. DOI: 10.1021/acs.langmuir.4c03943.


Origins of synergy in multilipid lubrication.

Cao Y, Jin D, Kampf N, Klein J Proc Natl Acad Sci U S A. 2024; 121(47):e2408223121.

PMID: 39531494 PMC: 11588124. DOI: 10.1073/pnas.2408223121.


Wide-Field Polarimetric Second-Harmonic Imaging for Rapid and Nondestructive Investigation of Laser-Induced Crystallization Phenomena.

Lee S, Kishi T, Bellouard Y ACS Nano. 2024; 18(36):24929-24940.

PMID: 39177946 PMC: 11394348. DOI: 10.1021/acsnano.4c05554.


Dynamic Second Harmonic Imaging of Proton Translocation Through Water Needles in Lipid Membranes.

Lee S, Poojari C, Maznichenko A, Roesel D, Swiderska I, Pohl P J Am Chem Soc. 2024; 146(29):19818-19827.

PMID: 38991220 PMC: 11273352. DOI: 10.1021/jacs.4c02810.


References
1.
Sly K, Nguyen T, Conboy J . Lens-less surface second harmonic imaging. Opt Express. 2012; 20(20):21953-67. PMC: 3601730. DOI: 10.1364/OE.20.021953. View

2.
Bennett I, Farfano H, Bogani F, Primak A, Liddell P, Otero L . Active transport of Ca2+ by an artificial photosynthetic membrane. Nature. 2002; 420(6914):398-401. DOI: 10.1038/nature01209. View

3.
Papahadjopoulos D, Nir S, Oki S . Permeability properties of phospholipid membranes: effect of cholesterol and temperature. Biochim Biophys Acta. 1972; 266(3):561-83. DOI: 10.1016/0006-3002(72)90001-7. View

4.
Tarun O, Hannesschlager C, Pohl P, Roke S . Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales. Proc Natl Acad Sci U S A. 2018; 115(16):4081-4086. PMC: 5910843. DOI: 10.1073/pnas.1719347115. View

5.
GLASER R, LEIKIN S, Chernomordik L, Pastushenko V, Sokirko A . Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta. 1988; 940(2):275-87. DOI: 10.1016/0005-2736(88)90202-7. View