» Articles » PMID: 36515153

Predicting Potential Interactions Between LncRNAs and Proteins Via Combined Graph Auto-encoder Methods

Overview
Journal Brief Bioinform
Specialty Biology
Date 2022 Dec 14
PMID 36515153
Authors
Affiliations
Soon will be listed here.
Abstract

Long noncoding RNA (lncRNA) is a kind of noncoding RNA with a length of more than 200 nucleotide units. Numerous research studies have proven that although lncRNAs cannot be directly translated into proteins, lncRNAs still play an important role in human growth processes by interacting with proteins. Since traditional biological experiments often require a lot of time and material costs to explore potential lncRNA-protein interactions (LPI), several computational models have been proposed for this task. In this study, we introduce a novel deep learning method known as combined graph auto-encoders (LPICGAE) to predict potential human LPIs. First, we apply a variational graph auto-encoder to learn the low dimensional representations from the high-dimensional features of lncRNAs and proteins. Then the graph auto-encoder is used to reconstruct the adjacency matrix for inferring potential interactions between lncRNAs and proteins. Finally, we minimize the loss of the two processes alternately to gain the final predicted interaction matrix. The result in 5-fold cross-validation experiments illustrates that our method achieves an average area under receiver operating characteristic curve of 0.974 and an average accuracy of 0.985, which is better than those of existing six state-of-the-art computational methods. We believe that LPICGAE can help researchers to gain more potential relationships between lncRNAs and proteins effectively.

Citing Articles

RNA sequence analysis landscape: A comprehensive review of task types, databases, datasets, word embedding methods, and language models.

Asim M, Ibrahim M, Asif T, Dengel A Heliyon. 2025; 11(2):e41488.

PMID: 39897847 PMC: 11783440. DOI: 10.1016/j.heliyon.2024.e41488.


Design and implementation of a radiomic-driven intelligent dental hospital diversion system utilizing multilabel imaging data.

Wu Y, Yu T, Zhang M, Li Y, Wang Y, Yang D J Transl Med. 2024; 22(1):1123.

PMID: 39707394 PMC: 11662546. DOI: 10.1186/s12967-024-05958-2.


Cross-modal embedding integrator for disease-gene/protein association prediction using a multi-head attention mechanism.

Chang M, Ahn J, Kang B, Yoon S Pharmacol Res Perspect. 2024; 12(6):e70034.

PMID: 39560053 PMC: 11574662. DOI: 10.1002/prp2.70034.


LncRNA-miRNA interactions prediction based on meta-path similarity and Gaussian kernel similarity.

Xie J, Xu P, Lin Y, Zheng M, Jia J, Tan X J Cell Mol Med. 2024; 28(19):e18590.

PMID: 39347925 PMC: 11441278. DOI: 10.1111/jcmm.18590.


Microbe-disease associations prediction by graph regularized non-negative matrix factorization with norm regularization terms.

Chen Z, Zhang L, Li J, Chen H J Cell Mol Med. 2024; 28(17):e18553.

PMID: 39239860 PMC: 11377990. DOI: 10.1111/jcmm.18553.