» Articles » PMID: 36480790

A Deep-Blue-Emitting Heteroatom-Doped MR-TADF Nonacene for High-Performance Organic Light-Emitting Diodes

Abstract

We present a p- and n-doped nonacene compound, NOBNacene, that represents a rare example of a linearly extended ladder-type multiresonant thermally activated delayed fluorescence (MR-TADF) emitter. This compound shows efficient narrow deep blue emission, with a λ of 410 nm, full width at half maximum, FWHM, of 38 nm, photoluminescence quantum yield, Φ of 71 %, and a delayed lifetime, τ of 1.18 ms in 1.5 wt % TSPO1 thin film. The organic light-emitting diode (OLED) using this compound as the emitter shows a comparable electroluminescence spectrum peaked at 409 nm (FWHM=37 nm) and a maximum external quantum efficiency (EQE ) of 8.5 % at Commission Internationale de l'Éclairage (CIE) coordinates of (0.173, 0.055). The EQE values were increased to 11.2 % at 3 wt % doping of the emitter within the emissive layer of the device. At this concentration, the electroluminescence spectrum broadened slightly, leading to CIE coordinates of (0.176, 0.068).

Citing Articles

Achieving efficient and stable blue thermally activated delayed fluorescence organic light-emitting diodes based on four-coordinate fluoroboron emitters by simple substitution molecular engineering.

Li P, Lai S, Chen Z, Tang W, Leung M, Ng M Chem Sci. 2024; 15(31):12606-12615.

PMID: 39118634 PMC: 11304800. DOI: 10.1039/d3sc06989c.


Highly efficient pure-blue organic light-emitting diodes based on rationally designed heterocyclic phenophosphazinine-containing emitters.

Xing L, Wang J, Chen W, Liu B, Chen G, Wang X Nat Commun. 2024; 15(1):6175.

PMID: 39039042 PMC: 11263564. DOI: 10.1038/s41467-024-50370-5.


Elevating the upconversion performance of a multiple resonance thermally activated delayed fluorescence emitter an embedded azepine approach.

Chen Y, Lei J, Wu T Chem Sci. 2024; 15(26):10146-10154.

PMID: 38966359 PMC: 11220617. DOI: 10.1039/d4sc02351j.


B‒N covalent bond-involved π-extension of multiple resonance emitters enables high-performance narrowband electroluminescence.

Huang X, Liu J, Xu Y, Chen G, Huang M, Yu M Natl Sci Rev. 2024; 11(6):nwae115.

PMID: 38707202 PMC: 11067958. DOI: 10.1093/nsr/nwae115.


Stepwise Toward Pure Blue Organic Light-Emitting Diodes by Synergetically Locking and Shielding Carbonyl/Nitrogen-Based MR-TADF Emitters.

Yu J, Tan H, Gao X, Wang B, Long Z, Liu J Adv Sci (Weinh). 2024; 11(28):e2401664.

PMID: 38704673 PMC: 11267287. DOI: 10.1002/advs.202401664.


References
1.
Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M . High-efficiency organic light-emitting diodes with fluorescent emitters. Nat Commun. 2014; 5:4016. DOI: 10.1038/ncomms5016. View

2.
Madayanad Suresh S, Duda E, Hall D, Yao Z, Bagnich S, Slawin A . A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet-Triplet Annihilation. J Am Chem Soc. 2020; 142(14):6588-6599. DOI: 10.1021/jacs.9b13704. View

3.
Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K . Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect. Adv Mater. 2016; 28(14):2777-81. DOI: 10.1002/adma.201505491. View

4.
Hall D, Sancho-Garcia J, Pershin A, Ricci G, Beljonne D, Zysman-Colman E . Modeling of Multiresonant Thermally Activated Delayed Fluorescence Emitters─Properly Accounting for Electron Correlation Is Key!. J Chem Theory Comput. 2022; 18(8):4903-4918. DOI: 10.1021/acs.jctc.2c00141. View

5.
Tanaka H, Oda S, Ricci G, Gotoh H, Tabata K, Kawasumi R . Hypsochromic Shift of Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angew Chem Int Ed Engl. 2021; 60(33):17910-17914. DOI: 10.1002/anie.202105032. View