SPRDA: a Link Prediction Approach Based on the Structural Perturbation to Infer Disease-associated Piwi-interacting RNAs
Overview
Affiliations
piRNA and PIWI proteins have been confirmed for disease diagnosis and treatment as novel biomarkers due to its abnormal expression in various cancers. However, the current research is not strong enough to further clarify the functions of piRNA in cancer and its underlying mechanism. Therefore, how to provide large-scale and serious piRNA candidates for biological research has grown up to be a pressing issue. In this study, a novel computational model based on the structural perturbation method is proposed to predict potential disease-associated piRNAs, called SPRDA. Notably, SPRDA belongs to positive-unlabeled learning, which is unaffected by negative examples in contrast to previous approaches. In the 5-fold cross-validation, SPRDA shows high performance on the benchmark dataset piRDisease, with an AUC of 0.9529. Furthermore, the predictive performance of SPRDA for 10 diseases shows the robustness of the proposed method. Overall, the proposed approach can provide unique insights into the pathogenesis of the disease and will advance the field of oncology diagnosis and treatment.
Bioinformatics Approaches in the Development of Antifungal Therapeutics and Vaccines.
Ahlawat V, Sura K, Singh B, Dangi M, Chhillar A Curr Genomics. 2024; 25(5):323-333.
PMID: 39323620 PMC: 11420568. DOI: 10.2174/0113892029281602240422052210.
MRDPDA: A multi-Laplacian regularized deepFM model for predicting piRNA-disease associations.
Liu Y, Zhang F, Ding Y, Fei R, Li J, Wu F J Cell Mol Med. 2024; 28(17):e70046.
PMID: 39228010 PMC: 11371490. DOI: 10.1111/jcmm.70046.
RT: a Retrieving and Chain-of-Thought framework for few-shot medical named entity recognition.
Li M, Zhou H, Yang H, Zhang R J Am Med Inform Assoc. 2024; 31(9):1929-1938.
PMID: 38708849 PMC: 11339512. DOI: 10.1093/jamia/ocae095.
IGCNSDA: unraveling disease-associated snoRNAs with an interpretable graph convolutional network.
Hu X, Zhang P, Liu D, Zhang J, Zhang Y, Dong Y Brief Bioinform. 2024; 25(3).
PMID: 38647155 PMC: 11033953. DOI: 10.1093/bib/bbae179.
Chen Q, Zhang L, Liu Y, Qin Z, Zhao T Brief Bioinform. 2024; 25(3).
PMID: 38581419 PMC: 10998538. DOI: 10.1093/bib/bbae144.