How Crystal Symmetry Dictates Non-Local Vibrational Circular Dichroism in the Solid State
Overview
Affiliations
Solid-State Vibrational Circular Dichroism (VCD) can be used to determine the absolute structure of chiral crystals, but its interpretation remains a challenge in modern spectroscopy. In this work, we investigate the effect of a twofold screw axis on the solid-state VCD spectrum in a combined experimental and theoretical analysis of P2 crystals of (S)-(+)-1-indanol. Even though the space group is achiral, a single proper symmetry operation has an important impact on the VCD spectrum, which reflects the supramolecular chirality of the crystal. Distinguishing between contributions originating from molecular chirality and from chiral crystal packing, we find that while IR absorption hardly depends on the symmetry of the space group, the situation is different for VCD, where completely new non-local patterns emerge. Understanding the two underlying mechanisms, namely gauge transport and direct coupling, will help to use VCD to distinguish polymorphic forms.
Exploring Naproxen Cocrystals Through Solid-State Vibrational Circular Dichroism.
Sklenar A, Zehnacker-Rentien A, Kaminsky J, Rohlicek J, Bour P Chirality. 2025; 37(3):e70027.
PMID: 39961648 PMC: 11832307. DOI: 10.1002/chir.70027.
Induced photoelectron circular dichroism onto an achiral chromophore.
Rouquet E, Roy Chowdhury M, Garcia G, Nahon L, Dupont J, Lepere V Nat Commun. 2023; 14(1):6290.
PMID: 37813848 PMC: 10562374. DOI: 10.1038/s41467-023-42002-1.
How Crystal Symmetry Dictates Non-Local Vibrational Circular Dichroism in the Solid State.
Jahnigen S, Le Barbu-Debus K, Guillot R, Vuilleumier R, Zehnacker A Angew Chem Int Ed Engl. 2022; 62(5):e202215599.
PMID: 36441537 PMC: 10107176. DOI: 10.1002/anie.202215599.