6.
Huang H, Korivi M, Tsai C, Yang J, Tsai Y
. Supplementation of Lactobacillus plantarum K68 and Fruit-Vegetable Ferment along with High Fat-Fructose Diet Attenuates Metabolic Syndrome in Rats with Insulin Resistance. Evid Based Complement Alternat Med. 2013; 2013:943020.
PMC: 3652198.
DOI: 10.1155/2013/943020.
View
7.
Wang J, Li M, Gao Y, Li H, Fang L, Liu C
. Effects of Exopolysaccharides from JLAU103 on Intestinal Immune Response, Oxidative Stress, and Microbial Communities in Cyclophosphamide-Induced Immunosuppressed Mice. J Agric Food Chem. 2022; 70(7):2197-2210.
DOI: 10.1021/acs.jafc.1c06502.
View
8.
Huang Z, Lin F, Zhu X, Zhang C, Jiang M, Lu Z
. An exopolysaccharide from Lactobacillus plantarum H31 in pickled cabbage inhibits pancreas α-amylase and regulating metabolic markers in HepG2 cells by AMPK/PI3K/Akt pathway. Int J Biol Macromol. 2019; 143:775-784.
DOI: 10.1016/j.ijbiomac.2019.09.137.
View
9.
Jin L, Li Y, Feng Q, Ren L, Wang F, Bo G
. Cognitive deficits and Alzheimer-like neuropathological impairments during adolescence in a rat model of type 2 diabetes mellitus. Neural Regen Res. 2018; 13(11):1995-2004.
PMC: 6183048.
DOI: 10.4103/1673-5374.239448.
View
10.
Wei R, Zhuge X, Yue P, Liu M, Zhu L, Liu J
. Effect of hepatic sympathetic nerve removal on energy metabolism in an animal model of cognitive impairment and its relationship to expression. Open Life Sci. 2021; 15(1):311-317.
PMC: 7874542.
DOI: 10.1515/biol-2020-0033.
View
11.
Wang Y, Su N, Hou G, Li J, Ye M
. Hypoglycemic and hypolipidemic effects of a polysaccharide from YM240 and its derivatives in mice, induced by a high fat diet and low dose STZ. Medchemcomm. 2018; 8(5):964-974.
PMC: 6071944.
DOI: 10.1039/c6md00697c.
View
12.
Dodd G, Tiganis T
. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol. 2017; 29(10).
DOI: 10.1111/jne.12513.
View
13.
Knobler H, Schattner A, Zhornicki T, Malnick S, Keter D, Sokolovskaya N
. Fatty liver--an additional and treatable feature of the insulin resistance syndrome. QJM. 1999; 92(2):73-9.
DOI: 10.1093/qjmed/92.2.73.
View
14.
Wang C, Chen Z, Pan Y, Gao X, Chen H
. Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice. Food Chem Toxicol. 2017; 108(Pt B):498-509.
DOI: 10.1016/j.fct.2017.01.007.
View
15.
Morshedi M, Valenlia K, Hosseinifard E, Shahabi P, Mesgari Abbasi M, Ghorbani M
. Beneficial psychological effects of novel psychobiotics in diabetic rats: the interaction among the gut, blood and amygdala. J Nutr Biochem. 2018; 57:145-152.
DOI: 10.1016/j.jnutbio.2018.03.022.
View
16.
Zheng Y, Ley S, Hu F
. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2017; 14(2):88-98.
DOI: 10.1038/nrendo.2017.151.
View
17.
Lee C, Zeng J, Drew B, Sallam T, Martin-Montalvo A, Wan J
. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015; 21(3):443-54.
PMC: 4350682.
DOI: 10.1016/j.cmet.2015.02.009.
View
18.
Pan L, Li X, Wang M, Zha X, Yang X, Liu Z
. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. Int J Biol Macromol. 2013; 64:420-7.
DOI: 10.1016/j.ijbiomac.2013.12.024.
View
19.
Yadav R, Dey D, Vij R, Meena S, Kapila R, Kapila S
. Evaluation of anti-diabetic attributes of Lactobacillus rhamnosus MTCC: 5957, Lactobacillus rhamnosus MTCC: 5897 and Lactobacillus fermentum MTCC: 5898 in streptozotocin induced diabetic rats. Microb Pathog. 2018; 125:454-462.
DOI: 10.1016/j.micpath.2018.10.015.
View
20.
Niemann B, Rohrbach S, Miller M, Newby D, Fuster V, Kovacic J
. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol. 2017; 70(2):230-251.
PMC: 5568826.
DOI: 10.1016/j.jacc.2017.05.043.
View