» Articles » PMID: 36365570

Advances in Biodegradable Soft Robots

Overview
Publisher MDPI
Date 2022 Nov 11
PMID 36365570
Authors
Affiliations
Soon will be listed here.
Abstract

Biodegradable soft robots have been proposed for a variety of intelligent applications in soft robotics, flexible electronics, and bionics. Biodegradability offers an extraordinary functional advantage to soft robots for operations accompanying smart shape transformation in response to external stimuli such as heat, pH, and light. This review primarily surveyed the current advanced scientific and engineering strategies for integrating biodegradable materials within stimuli-responsive soft robots. It also focused on the fabrication methodologies of multiscale biodegradable soft robots, and highlighted the role of biodegradable soft robots in enhancing the multifunctional properties of drug delivery capsules, biopsy tools, smart actuators, and sensors. Lastly, the current challenges and perspectives on the future development of intelligent soft robots for operation in real environments were discussed.

Citing Articles

Organic Ink Multi-Material 3D Printing of Sustainable Soft Systems.

Heiden A, Schardax M, Huttenberger M, Preninger D, Mao G, Schiller D Adv Mater. 2024; 37(4):e2409403.

PMID: 39533489 PMC: 11775878. DOI: 10.1002/adma.202409403.


A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials-Recent Advances and Future Perspectives.

Balcerak-Wozniak A, Dzwonkowska-Zarzycka M, Kabatc-Borcz J Materials (Basel). 2024; 17(17).

PMID: 39274645 PMC: 11396725. DOI: 10.3390/ma17174255.


A review on self-healing featured soft robotics.

Islam M, Talukder L, Al M, Sarker S, Muyeen S, Das P Front Robot AI. 2023; 10:1202584.

PMID: 37953963 PMC: 10637358. DOI: 10.3389/frobt.2023.1202584.


Bioinspired robots can foster nature conservation.

Chellapurath M, Khandelwal P, Schulz A Front Robot AI. 2023; 10:1145798.

PMID: 37920863 PMC: 10619165. DOI: 10.3389/frobt.2023.1145798.


A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications.

Wang Y, Chen J, Su G, Mei J, Li J Micromachines (Basel). 2023; 14(9).

PMID: 37763873 PMC: 10537272. DOI: 10.3390/mi14091710.


References
1.
Kim K, Dean D, Mikos A, Fisher J . Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks. Biomacromolecules. 2009; 10(7):1810-7. PMC: 3655530. DOI: 10.1021/bm900240k. View

2.
Hosseinidoust Z, Mostaghaci B, Yasa O, Park B, Singh A, Sitti M . Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016; 106(Pt A):27-44. DOI: 10.1016/j.addr.2016.09.007. View

3.
Zhou M, Yu D . Cartilage tissue engineering using PHBV and PHBV/Bioglass scaffolds. Mol Med Rep. 2014; 10(1):508-14. DOI: 10.3892/mmr.2014.2145. View

4.
Bunea A, Taboryski R . Recent Advances in Microswimmers for Biomedical Applications. Micromachines (Basel). 2020; 11(12). PMC: 7760273. DOI: 10.3390/mi11121048. View

5.
Gogele C, Muller S, Belov S, Pradel A, Wiltzsch S, Lenhart A . Biodegradable Poly(D-L-lactide-co-glycolide) (PLGA)-Infiltrated Bioactive Glass (CAR12N) Scaffolds Maintain Mesenchymal Stem Cell Chondrogenesis for Cartilage Tissue Engineering. Cells. 2022; 11(9). PMC: 9100331. DOI: 10.3390/cells11091577. View