Cartilage Tissue Engineering Using PHBV and PHBV/Bioglass Scaffolds
Overview
Authors
Affiliations
Scaffolds have an important role in cartilage tissue engineering. Poly(hydroxybutyrate‑co‑hydroxyvalerate) (PHBV) has been demonstrated to have potential as a scaffold for the three dimensional construction of engineered cartilage tissue. However, the poor hydrophilicity and mechanical strength associated with PHBV affects its clinical applications as a scaffold in cartilage tissue engineering. The incorporation of Bioglass (BG) into PHBV has been shown to improve the hydrophilicity and mechanical strength of PHBV matrices. Therefore, this study aimed to compare the properties of PHBV scaffolds and PHBV scaffolds containing 10% BG (w/w) (PHBV/10% BG) and to investigate the effects of these scaffolds on the properties of engineered cartilage in vivo. Rabbit auricular chondrocytes were seeded onto PHBV and PHBV/10% BG scaffolds. Differences in cartilage regeneration were compared between the neocartilage grown on the PHBV and the PHBV/10% BG scaffolds after 10 weeks of in vivo transplantation. The incorporation of BG into PHBV was observed to improve the hydrophilicity and compressive strength of the scaffold. Furthermore, after 10 weeks incubation in vivo, the cartilage‑like tissue formed using the PHBV/10% BG scaffolds was observed to be thicker, exhibit enhanced biomechanical properties and have a higher cartilage matrix content than that generated using the pure PHBV scaffolds. The results of this study demonstrate that the incorporation of BG into PHBV may generate composite scaffolds with improved properties for cartilage engineering.
Advances in Biodegradable Soft Robots.
Kim J, Park H, Yoon C Polymers (Basel). 2022; 14(21).
PMID: 36365570 PMC: 9658808. DOI: 10.3390/polym14214574.
Gogele C, Muller S, Belov S, Pradel A, Wiltzsch S, Lenhart A Cells. 2022; 11(9).
PMID: 35563883 PMC: 9100331. DOI: 10.3390/cells11091577.
Bittolo Bon S, Chiesa I, Degli Esposti M, Morselli D, Fabbri P, De Maria C ACS Appl Mater Interfaces. 2021; 13(18):21007-21017.
PMID: 33934601 PMC: 8153539. DOI: 10.1021/acsami.1c03288.
Demirkiran N, Havitcioglu H, Ziylan A, Cankurt U, Husemoglu B Acta Orthop Traumatol Turc. 2019; 53(2):120-128.
PMID: 30826138 PMC: 6506817. DOI: 10.1016/j.aott.2019.02.004.
Surface Modification of SPIONs in PHBV Microspheres for Biomedical Applications.
Idris M, Zaloga J, Detsch R, Roether J, Unterweger H, Alexiou C Sci Rep. 2018; 8(1):7286.
PMID: 29739955 PMC: 5940902. DOI: 10.1038/s41598-018-25243-9.