» Articles » PMID: 36352481

Dietary Fibers with Low Hydration Properties Exacerbate Diarrhea and Impair Intestinal Health and Nutrient Digestibility in Weaned Piglets

Overview
Publisher Biomed Central
Date 2022 Nov 10
PMID 36352481
Authors
Affiliations
Soon will be listed here.
Abstract

Background: This study aimed to investigate the hydration properties of different-source fibrous materials by comparing their water-binding capacity (WBC), water swelling capacity (WSC), viscosity, and in vivo effects of selected samples on growth performance, nutrient digestibility, diarrhea, and intestinal health in weaned piglets.

Methods: A total of 13 commercially available fibrous materials were first compared in chemical composition and in vitro hydration property. Subsequently, 40 weaned piglets were randomized to five experimental dietary groups (8 piglets per group): control diet (a basal diet without dietary fiber, CON), basal diet supplemented with 5% microcrystalline cellulose (MCC), 5% wheat bran (WB), 5% Moringa oleifera leaf powder (MOLP), or 5% sugar beet pulp (SBP), followed by analyzing their growth performance and diarrhea rate in a 28-d experiment. After the feeding experiment, anaesthetized piglets were killed, and their intestinal and colon content or plasma samples were analyzed in nutrient digestibility, intestinal morphology, intestinal barrier, short-chain fatty acids (SCFAs), and bacterial population.

Results: In vitro studies showed low hydration properties for WB and MCC, while medium hydration properties for MOLP and SBP. In vivo studies indicated that compared with medium hydration property groups, low hydration property groups showed (1) exacerbated diarrhea, impaired intestinal health, and reduced apparent fecal digestibility of dry matter, gross energy, acid detergent fiber, and neutral detergent fiber; (2) decreased SCFAs concentration and relative levels of Lactobacillus and Bifidobacterium, but increased levels of Escherichia coli and Brachyspira hyodysenteriae in colon contents. Additionally, SBP showed optimal performance in reducing diarrhea and increasing SCFAs production. Correlation analysis revealed a positive correlation of fiber hydration properties with in vitro SCFAs production, and diarrhea index and nutrient digestibility were negatively and positively correlated with SCFAs levels in the colon contents of weaned piglets, respectively.

Conclusions: Different-source dietary fibers varied in their hydration properties and impacts on diarrhea, microbial composition and SCFAs production in weaned piglets. WB and MCC could exacerbate diarrhea and impair nutrient digestibility, probably because their low hydration properties were detrimental to gut microbial homeostasis and fermentation. Our findings provide new ideas for rational use of fiber resources in weaned piglets.

Citing Articles

Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs.

Yong F, Liu B, Li H, Hao H, Fan Y, Datsomor O J Anim Sci Biotechnol. 2025; 16(1):1.

PMID: 39748438 PMC: 11697959. DOI: 10.1186/s40104-024-01129-x.


Effects of different ratios of soluble to insoluble dietary fiber on growth performance and intestinal health of piglets.

Feng L, Luo Z, Wang J, Wu K, Wang W, Liu Z Anim Nutr. 2024; 18:257-271.

PMID: 39281054 PMC: 11402385. DOI: 10.1016/j.aninu.2024.05.005.


Effect of Dietary Sugarcane Bagasse on Reproductive Performance, Constipation, and Gut Microbiota of Gestational Sows.

Huang R, Zhang B, Wang J, Zhao W, Huang Y, Liu Y Animals (Basel). 2024; 14(17).

PMID: 39272308 PMC: 11393912. DOI: 10.3390/ani14172523.


Relationship between dietary fiber intake and chronic diarrhea in adults.

Wang L, Li Y, Zhang Y, Peng L World J Clin Cases. 2024; 12(19):3692-3700.

PMID: 38994290 PMC: 11235452. DOI: 10.12998/wjcc.v12.i19.3692.


Dietary Fiber-Derived Butyrate Alleviates Piglet Weaning Stress by Modulating the TLR4/MyD88/NF-κB Pathway.

Huangfu W, Ma J, Zhang Y, Liu M, Liu B, Zhao J Nutrients. 2024; 16(11).

PMID: 38892647 PMC: 11174469. DOI: 10.3390/nu16111714.


References
1.
Biasato I, Renna M, Gai F, Dabbou S, Meneguz M, Perona G . Partially defatted black soldier fly larva meal inclusion in piglet diets: effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J Anim Sci Biotechnol. 2019; 10:12. PMC: 6379995. DOI: 10.1186/s40104-019-0325-x. View

2.
Wang S, Yang J, Zhang B, Zhang L, Wu K, Yang A . Potential Link between Gut Microbiota and Deoxynivalenol-Induced Feed Refusal in Weaned Piglets. J Agric Food Chem. 2019; 67(17):4976-4986. DOI: 10.1021/acs.jafc.9b01037. View

3.
Gill S, Rossi M, Bajka B, Whelan K . Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2020; 18(2):101-116. DOI: 10.1038/s41575-020-00375-4. View

4.
Heo J, Opapeju F, Pluske J, Kim J, Hampson D, Nyachoti C . Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl). 2012; 97(2):207-37. DOI: 10.1111/j.1439-0396.2012.01284.x. View

5.
Zhang W, Li D, Liu L, Zang J, Duan Q, Yang W . The effects of dietary fiber level on nutrient digestibility in growing pigs. J Anim Sci Biotechnol. 2013; 4(1):17. PMC: 3643821. DOI: 10.1186/2049-1891-4-17. View