» Articles » PMID: 36352039

Peristaltic Regimes in Esophageal Transport

Overview
Publisher Springer
Date 2022 Nov 9
PMID 36352039
Authors
Affiliations
Soon will be listed here.
Abstract

A FLIP device gives cross-sectional area along the length of the esophagus and one pressure measurement, both as a function of time. Deducing mechanical properties of the esophagus including wall material properties, contraction strength, and wall relaxation from these data are a challenging inverse problem. Knowing mechanical properties can change how clinical decisions are made because of its potential for in-vivo mechanistic insights. To obtain such information, we conducted a parametric study to identify peristaltic regimes by using a 1D model of peristaltic flow through an elastic tube closed on both ends and also applied it to interpret clinical data. The results gave insightful information about the effect of tube stiffness, fluid/bolus density and contraction strength on the resulting esophagus shape through quantitive representations of the peristaltic regimes. Our analysis also revealed the mechanics of the opening of the contraction area as a function of bolus flow resistance. Lastly, we concluded that peristaltic driven flow displays three modes of peristaltic geometries, but all physiologically relevant flows fall into two peristaltic regimes characterized by a tight contraction.

Citing Articles

Enhancing Chicago Classification diagnoses with functional lumen imaging probe-mechanics (FLIP-MECH).

Halder S, Yamasaki J, Liu X, Carlson D, Kou W, Kahrilas P Neurogastroenterol Motil. 2024; 36(8):e14841.

PMID: 38852150 PMC: 11246220. DOI: 10.1111/nmo.14841.


A Mechanics-Based Perspective on the Function of Human Sphincters During Functional Luminal Imaging Probe Manometry.

Elisha G, Halder S, Carlson D, Kou W, Kahrilas P, Pandolfino J J Biomech Eng. 2023; 146(2).

PMID: 37994843 PMC: 10750791. DOI: 10.1115/1.4064125.


A mechanics-based perspective on the function of the esophagogastric junction during functional luminal imaging probe manometry.

Elisha G, Halder S, Acharya S, Carlson D, Kou W, Kahrilas P Biomech Model Mechanobiol. 2023; 22(3):905-923.

PMID: 36752983 PMC: 10211424. DOI: 10.1007/s10237-023-01688-4.


A mechanics-based perspective on the pressure-cross-sectional area loop within the esophageal body.

Elisha G, Halder S, Carlson D, Kahrilas P, Pandolfino J, Patankar N Front Physiol. 2023; 13:1066351.

PMID: 36699676 PMC: 9868904. DOI: 10.3389/fphys.2022.1066351.

References
1.
Halder S, Acharya S, Kou W, Kahrilas P, Pandolfino J, Patankar N . Mechanics informed fluoroscopy of esophageal transport. Biomech Model Mechanobiol. 2021; 20(3):925-940. PMC: 8159889. DOI: 10.1007/s10237-021-01420-0. View

2.
Ottesen J . Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation. J Math Biol. 2003; 46(4):309-32. DOI: 10.1007/s00285-002-0179-1. View

3.
Kwiatek M, Hirano I, Kahrilas P, Rothe J, Luger D, Pandolfino J . Mechanical properties of the esophagus in eosinophilic esophagitis. Gastroenterology. 2010; 140(1):82-90. PMC: 3008315. DOI: 10.1053/j.gastro.2010.09.037. View

4.
Abrahao Jr L, Bhargava V, Babaei A, Ho A, Mittal R . Swallow induces a peristaltic wave of distension that marches in front of the peristaltic wave of contraction. Neurogastroenterol Motil. 2010; 23(3):201-7, e110. DOI: 10.1111/j.1365-2982.2010.01624.x. View

5.
Lin Z, Kahrilas P, Xiao Y, Nicodeme F, Gonsalves N, Hirano I . Functional luminal imaging probe topography: an improved method for characterizing esophageal distensibility in eosinophilic esophagitis. Therap Adv Gastroenterol. 2013; 6(2):97-107. PMC: 3589134. DOI: 10.1177/1756283X12470017. View