» Articles » PMID: 36309498

Genome-wide Rare Variant Score Associates with Morphological Subtypes of Autism Spectrum Disorder

Abstract

Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.

Citing Articles

Unveiling genetic insights: Array-CGH and WES discoveries in a cohort of 122 children with essential autism spectrum disorder.

Granata P, Zito A, Cocciadiferro D, Novelli A, Pessina C, Mazza T BMC Genomics. 2024; 25(1):1186.

PMID: 39654053 PMC: 11629504. DOI: 10.1186/s12864-024-11077-5.


Resolving complex duplication variants in autism spectrum disorder using long-read genome sequencing.

Eisfeldt J, Higginbotham E, Lenner F, Howe J, Fernandez B, Lindstrand A Genome Res. 2024; 34(11):1763-1773.

PMID: 39472019 PMC: 11610597. DOI: 10.1101/gr.279263.124.


Decomposition of phenotypic heterogeneity in autism reveals distinct and coherent genetic programs.

Litman A, Sauerwald N, Snyder L, Foss-Feig J, Park C, Hao Y medRxiv. 2024; .

PMID: 39185525 PMC: 11343255. DOI: 10.1101/2024.08.15.24312078.


Contribution of autosomal rare and variants to sex differences in autism.

Koko M, Satterstrom F, Warrier V, Martin H medRxiv. 2024; .

PMID: 38699304 PMC: 11065020. DOI: 10.1101/2024.04.13.24305713.


Recent advances in polygenic scores: translation, equitability, methods and FAIR tools.

Xiang R, Kelemen M, Xu Y, Harris L, Parkinson H, Inouye M Genome Med. 2024; 16(1):33.

PMID: 38373998 PMC: 10875792. DOI: 10.1186/s13073-024-01304-9.


References
1.
Rooney Riggs E, Andersen E, Cherry A, Kantarci S, Kearney H, Patel A . Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2019; 22(2):245-257. PMC: 7313390. DOI: 10.1038/s41436-019-0686-8. View

2.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A . The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20(9):1297-303. PMC: 2928508. DOI: 10.1101/gr.107524.110. View

3.
Gonzalez-Mantilla A, Moreno-De-Luca A, Ledbetter D, Martin C . A Cross-Disorder Method to Identify Novel Candidate Genes for Developmental Brain Disorders. JAMA Psychiatry. 2016; 73(3):275-83. PMC: 5333489. DOI: 10.1001/jamapsychiatry.2015.2692. View

4.
Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A . Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518(7539):317-30. PMC: 4530010. DOI: 10.1038/nature14248. View

5.
Miles J, Takahashi T, Hong J, Munden N, Flournoy N, Braddock S . Development and validation of a measure of dysmorphology: useful for autism subgroup classification. Am J Med Genet A. 2008; 146A(9):1101-16. DOI: 10.1002/ajmg.a.32244. View