» Articles » PMID: 36261666

Solid Electrolyte Interface in Zn-Based Battery Systems

Overview
Journal Nanomicro Lett
Publisher Springer
Date 2022 Oct 19
PMID 36261666
Authors
Affiliations
Soon will be listed here.
Abstract

Due to its high theoretical capacity (820 mAh g), low standard electrode potential (- 0.76 V vs. SHE), excellent stability in aqueous solutions, low cost, environmental friendliness and intrinsically high safety, zinc (Zn)-based batteries have attracted much attention in developing new energy storage devices. In Zn battery system, the battery performance is significantly affected by the solid electrolyte interface (SEI), which is controlled by electrode and electrolyte, and attracts dendrite growth, electrochemical stability window range, metallic Zn anode corrosion and passivation, and electrolyte mutations. Therefore, the design of SEI is decisive for the overall performance of Zn battery systems. This paper summarizes the formation mechanism, the types and characteristics, and the characterization techniques associated with SEI. Meanwhile, we analyze the influence of SEI on battery performance, and put forward the design strategies of SEI. Finally, the future research of SEI in Zn battery system is prospected to seize the nature of SEI, improve the battery performance and promote the large-scale application.

Citing Articles

Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency.

Meng Y, Wang M, Wang J, Huang X, Zhou X, Sajid M Nat Commun. 2024; 15(1):8431.

PMID: 39343779 PMC: 11439932. DOI: 10.1038/s41467-024-52611-z.


Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: From single scale to multiscale structure detection.

Cheng W, Zhao M, Lai Y, Wang X, Liu H, Xiao P Exploration (Beijing). 2024; 4(1):20230056.

PMID: 38854491 PMC: 10867397. DOI: 10.1002/EXP.20230056.


Rescuing zinc anode-electrolyte interface: mechanisms, theoretical simulations and characterizations.

Liu Z, Zhang X, Liu Z, Jiang Y, Wu D, Huang Y Chem Sci. 2024; 15(19):7010-7033.

PMID: 38756795 PMC: 11095385. DOI: 10.1039/d4sc00711e.


Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries.

Yang X, Wang X, Xiang Y, Ma L, Huang W Nanomicro Lett. 2023; 16(1):51.

PMID: 38099969 PMC: 10724106. DOI: 10.1007/s40820-023-01256-6.


Electrolyte Additives for Stable Zn Anodes.

Bai S, Huang Z, Liang G, Yang R, Liu D, Wen W Adv Sci (Weinh). 2023; 11(4):e2304549.

PMID: 38009799 PMC: 10811481. DOI: 10.1002/advs.202304549.


References
1.
Wang L, Zhang Y, Hu H, Shi H, Song Y, Guo D . A Zn(ClO) Electrolyte Enabling Long-Life Zinc Metal Electrodes for Rechargeable Aqueous Zinc Batteries. ACS Appl Mater Interfaces. 2019; 11(45):42000-42005. DOI: 10.1021/acsami.9b10905. View

2.
Guo Z, Fan L, Zhao C, Chen A, Liu N, Zhang Y . A Dynamic and Self-Adapting Interface Coating for Stable Zn-Metal Anodes. Adv Mater. 2021; 34(2):e2105133. DOI: 10.1002/adma.202105133. View

3.
Han D, Wu S, Zhang S, Deng Y, Cui C, Zhang L . A Corrosion-Resistant and Dendrite-Free Zinc Metal Anode in Aqueous Systems. Small. 2020; 16(29):e2001736. DOI: 10.1002/smll.202001736. View

4.
Wang Y, Guo T, Yin J, Tian Z, Ma Y, Liu Z . Controlled Deposition of Zinc-Metal Anodes via Selectively Polarized Ferroelectric Polymers. Adv Mater. 2021; 34(4):e2106937. DOI: 10.1002/adma.202106937. View

5.
Miao Y, Liu L, Zhang Y, Tan Q, Li J . An overview of global power lithium-ion batteries and associated critical metal recycling. J Hazard Mater. 2021; 425:127900. DOI: 10.1016/j.jhazmat.2021.127900. View