6.
Husnik J, Volschenk H, Bauer J, Colavizza D, Luo Z, van Vuuren H
. Metabolic engineering of malolactic wine yeast. Metab Eng. 2006; 8(4):315-23.
DOI: 10.1016/j.ymben.2006.02.003.
View
7.
Alperstein L, Gardner J, Sundstrom J, Sumby K, Jiranek V
. Yeast bioprospecting versus synthetic biology-which is better for innovative beverage fermentation?. Appl Microbiol Biotechnol. 2020; 104(5):1939-1953.
DOI: 10.1007/s00253-020-10364-x.
View
8.
Betlej G, Bator E, Oklejewicz B, Potocki L, Gorka A, Slowik-Borowiec M
. Long-Term Adaption to High Osmotic Stress as a Tool for Improving Enological Characteristics in Industrial Wine Yeast. Genes (Basel). 2020; 11(5).
PMC: 7288280.
DOI: 10.3390/genes11050576.
View
9.
Tilloy V, Ortiz-Julien A, Dequin S
. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol. 2014; 80(8):2623-32.
PMC: 3993162.
DOI: 10.1128/AEM.03710-13.
View
10.
Swiegers J, Pretorius I
. Yeast modulation of wine flavor. Adv Appl Microbiol. 2005; 57:131-75.
DOI: 10.1016/S0065-2164(05)57005-9.
View
11.
Pretorius I
. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. 2019; 20(1).
PMC: 6964221.
DOI: 10.1093/femsyr/foz084.
View
12.
Walker M, Zhang J, Sumby K, Lee A, Houles A, Li S
. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation. Yeast. 2021; 38(6):367-381.
DOI: 10.1002/yea.3553.
View
13.
Rollero S, Zietsman A, Buffetto F, Schuckel J, Ortiz-Julien A, Divol B
. Kluyveromyces marxianus Secretes a Pectinase in Shiraz Grape Must That Impacts Technological Properties and Aroma Profile of Wine. J Agric Food Chem. 2018; 66(44):11739-11747.
DOI: 10.1021/acs.jafc.8b03977.
View
14.
Kunes S, Botstein D, Fox M
. Transformation of yeast with linearized plasmid DNA. Formation of inverted dimers and recombinant plasmid products. J Mol Biol. 1985; 184(3):375-87.
DOI: 10.1016/0022-2836(85)90288-8.
View
15.
Zhang Y, Wang J, Wang Z, Zhang Y, Shi S, Nielsen J
. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun. 2019; 10(1):1053.
PMC: 6400946.
DOI: 10.1038/s41467-019-09005-3.
View
16.
Du Q, Liu Y, Song Y, Qin Y
. Creation of a Low-Alcohol-Production Yeast by a Mutated Transcription Regulator Triggers Transcriptional and Metabolic Changes During Wine Fermentation. Front Microbiol. 2020; 11:597828.
PMC: 7768003.
DOI: 10.3389/fmicb.2020.597828.
View
17.
van Wyk N, Kroukamp H, Espinosa M, von Wallbrunn C, Wendland J, Pretorius I
. Blending wine yeast phenotypes with the aid of CRISPR DNA editing technologies. Int J Food Microbiol. 2020; 324:108615.
DOI: 10.1016/j.ijfoodmicro.2020.108615.
View
18.
Sipiczki M
. Interspecies Hybridisation and Genome Chimerisation in : Combining of Gene Pools of Species and Its Biotechnological Perspectives. Front Microbiol. 2019; 9:3071.
PMC: 6297871.
DOI: 10.3389/fmicb.2018.03071.
View
19.
Vaquero C, Loira I, Banuelos M, Heras J, Cuerda R, Morata A
. Industrial Performance of Several Strains for pH Control in White Wines from Warm Areas. Microorganisms. 2020; 8(6).
PMC: 7355624.
DOI: 10.3390/microorganisms8060830.
View
20.
Manzanares P, Orejas M, Gil J, de Graaff L, Visser J, Ramon D
. Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an alpha-L-rhamnosidase of enological interest. Appl Environ Microbiol. 2003; 69(12):7558-62.
PMC: 309916.
DOI: 10.1128/AEM.69.12.7558-7562.2003.
View