» Articles » PMID: 36242564

ICSDA: a Multi-modal Deep Learning Model to Predict Breast Cancer Recurrence and Metastasis Risk by Integrating Pathological, Clinical and Gene Expression Data

Overview
Journal Brief Bioinform
Specialty Biology
Date 2022 Oct 15
PMID 36242564
Authors
Affiliations
Soon will be listed here.
Abstract

Breast cancer patients often have recurrence and metastasis after surgery. Predicting the risk of recurrence and metastasis for a breast cancer patient is essential for the development of precision treatment. In this study, we proposed a novel multi-modal deep learning prediction model by integrating hematoxylin & eosin (H&E)-stained histopathological images, clinical information and gene expression data. Specifically, we segmented tumor regions in H&E into image blocks (256 × 256 pixels) and encoded each image block into a 1D feature vector using a deep neural network. Then, the attention module scored each area of the H&E-stained images and combined image features with clinical and gene expression data to predict the risk of recurrence and metastasis for each patient. To test the model, we downloaded all 196 breast cancer samples from the Cancer Genome Atlas with clinical, gene expression and H&E information simultaneously available. The samples were then divided into the training and testing sets with a ratio of 7: 3, in which the distributions of the samples were kept between the two datasets by hierarchical sampling. The multi-modal model achieved an area-under-the-curve value of 0.75 on the testing set better than those based solely on H&E image, sequencing data and clinical data, respectively. This study might have clinical significance in identifying high-risk breast cancer patients, who may benefit from postoperative adjuvant treatment.

Citing Articles

Harnessing artificial intelligence for predicting breast cancer recurrence: a systematic review of clinical and imaging data.

Silveira J, da Silva A, de Lima M Discov Oncol. 2025; 16(1):135.

PMID: 39921795 PMC: 11807043. DOI: 10.1007/s12672-025-01908-6.


CAMIL: channel attention-based multiple instance learning for whole slide image classification.

Mao J, Xu J, Tang X, Liu Y, Zhao H, Tian G Bioinformatics. 2025; 41(2).

PMID: 39820310 PMC: 11802473. DOI: 10.1093/bioinformatics/btaf024.


Multimodal deep learning approaches for precision oncology: a comprehensive review.

Yang H, Yang M, Chen J, Yao G, Zou Q, Jia L Brief Bioinform. 2025; 26(1).

PMID: 39757116 PMC: 11700660. DOI: 10.1093/bib/bbae699.


Cancer molecular subtyping using limited multi-omics data with missingness.

Bu Y, Liang J, Li Z, Wang J, Wang J, Yu G PLoS Comput Biol. 2024; 20(12):e1012710.

PMID: 39724112 PMC: 11709273. DOI: 10.1371/journal.pcbi.1012710.


The characteristics of intratumoral microbial community reflect the development of lung adenocarcinoma.

Su Y, Li S, Sang D, Zhang Y Front Microbiol. 2024; 15:1353940.

PMID: 38721596 PMC: 11076736. DOI: 10.3389/fmicb.2024.1353940.