» Articles » PMID: 36224300

Measurement of Retinal Nerve Fiber Layer Thickness with a Deep Learning Algorithm in Ischemic Optic Neuropathy and Optic Neuritis

Overview
Journal Sci Rep
Specialty Science
Date 2022 Oct 12
PMID 36224300
Authors
Affiliations
Soon will be listed here.
Abstract

This work aims at determining the ability of a deep learning (DL) algorithm to measure retinal nerve fiber layer (RNFL) thickness from optical coherence tomography (OCT) scans in anterior ischemic optic neuropathy (NAION) and demyelinating optic neuritis (ON). The training/validation dataset included 750 RNFL OCT B-scans. Performance of our algorithm was evaluated on 194 OCT B-scans from 70 healthy eyes, 82 scans from 28 NAION eyes, and 84 scans of 29 ON eyes. Results were compared to manual segmentation as a ground-truth and to RNFL calculations from the built-in instrument software. The Dice coefficient for the test images was 0.87. The mean average RNFL thickness using our U-Net was not different from the manually segmented best estimate and OCT machine data in control and ON eyes. In NAION eyes, while the mean average RNFL thickness using our U-Net algorithm was not different from the manual segmented value, the OCT machine data were different from the manual segmented values. In NAION eyes, the MAE of the average RNFL thickness was 1.18 ± 0.69 μm and 6.65 ± 5.37 μm in the U-Net algorithm segmentation and the conventional OCT machine data, respectively (P = 0.0001).

Citing Articles

Deep Learning Approach Predicts Longitudinal Retinal Nerve Fiber Layer Thickness Changes.

Jalili J, Walker E, Bowd C, Belghith A, Goldbaum M, Fazio M Bioengineering (Basel). 2025; 12(2).

PMID: 40001659 PMC: 11851649. DOI: 10.3390/bioengineering12020139.


Sector-Based Regression Strategies to Reduce Refractive Error-Associated Glaucoma Diagnostic Bias When Using OCT and OCT Angiography.

Liu K, You Q, Chen A, Choi D, White E, Chan J Transl Vis Sci Technol. 2023; 12(9):10.

PMID: 37713187 PMC: 10506684. DOI: 10.1167/tvst.12.9.10.


Deep learning system for distinguishing optic neuritis from non-arteritic anterior ischemic optic neuropathy at acute phase based on fundus photographs.

Liu K, Liu S, Tan X, Li W, Wang L, Li X Front Med (Lausanne). 2023; 10:1188542.

PMID: 37457581 PMC: 10339343. DOI: 10.3389/fmed.2023.1188542.

References
1.
Mansberger S, Menda S, Fortune B, Gardiner S, Demirel S . Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma. Am J Ophthalmol. 2016; 174:1-8. PMC: 5548380. DOI: 10.1016/j.ajo.2016.10.020. View

2.
Fang L, Cunefare D, Wang C, Guymer R, Li S, Farsiu S . Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed Opt Express. 2017; 8(5):2732-2744. PMC: 5480509. DOI: 10.1364/BOE.8.002732. View

3.
Fard M, Afzali M, Abdi P, Chen R, Yaseri M, Azaripour E . Optic Nerve Head Morphology in Nonarteritic Anterior Ischemic Optic Neuropathy Compared to Open-Angle Glaucoma. Invest Ophthalmol Vis Sci. 2016; 57(11):4632-40. DOI: 10.1167/iovs.16-19442. View

4.
Park E, Tsikata E, Lee J, Shieh E, Braaf B, Vakoc B . Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography. Transl Vis Sci Technol. 2020; 9(10):10. PMC: 7488619. DOI: 10.1167/tvst.9.10.10. View

5.
Asrani S, Essaid L, Alder B, Santiago-Turla C . Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol. 2014; 132(4):396-402. DOI: 10.1001/jamaophthalmol.2013.7974. View