» Articles » PMID: 19259243

Effect of Image Quality on Tissue Thickness Measurements Obtained with Spectral Domain-optical Coherence Tomography

Overview
Journal Opt Express
Date 2009 Mar 5
PMID 19259243
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

The purpose of this study was to investigate the effect of image quality on retinal nerve fiber layer (RNFL) and retinal thickness measurements obtained using three commercially available spectral domain-optical coherence tomographers (SD-OCT). Subjectively determined good, medium and poor quality images were obtained from four healthy and one glaucoma suspect eyes. RNFL and retinal thickness measurements were compared as a function of image quality. Results indicate that when image quality is within the range specified as acceptable by SD-OCT manufacturers, RNFL and retinal thickness measurements are comparable.

Citing Articles

Intraocular pressure and optical coherence tomography concerning visual field outcomes in "green" patients: An observational study.

Chou J, Tseng P, Hu H, Yen C Medicine (Baltimore). 2024; 103(46):e40518.

PMID: 39560596 PMC: 11575967. DOI: 10.1097/MD.0000000000040518.


Assessment of Time Lag Between Blood Flow, Retinal Nerve Fiber Layer Thickness and Visual Field Sensitivity Changes in Glaucoma.

Higgins B, Cull G, Gardiner S Invest Ophthalmol Vis Sci. 2024; 65(4):7.

PMID: 38564193 PMC: 10996942. DOI: 10.1167/iovs.65.4.7.


Quantitative assessments of retinal macular structure among rural-dwelling older adults in China: a population-based, cross-sectional, optical coherence tomography study.

Zhang Q, Zhang C, Wang Y, Cong L, Liu K, Xu Z BMJ Open. 2024; 14(2):e079006.

PMID: 38320838 PMC: 10860037. DOI: 10.1136/bmjopen-2023-079006.


Evaluation of multiple sclerosis severity using a new OCT tool.

Vilades E, Cordon B, Perez-Velilla J, Orduna E, Satue M, Polo V PLoS One. 2023; 18(7):e0288581.

PMID: 37440532 PMC: 10343038. DOI: 10.1371/journal.pone.0288581.


Effect of Weiss ring on peripapillary retinal nerve fiber layer thickness measurements using SD-OCT.

Kim M, Nam K, Hwang Y, Lee M, Lee W, Lim H Sci Rep. 2022; 12(1):17357.

PMID: 36253380 PMC: 9576704. DOI: 10.1038/s41598-022-22094-3.


References
1.
Nassif N, Cense B, Park B, Yun S, Chen T, Bouma B . In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett. 2004; 29(5):480-2. DOI: 10.1364/ol.29.000480. View

2.
Wojtkowski M, Srinivasan V, Fujimoto J, Ko T, Schuman J, Kowalczyk A . Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2005; 112(10):1734-46. PMC: 1939719. DOI: 10.1016/j.ophtha.2005.05.023. View

3.
van Velthoven M, Faber D, Verbraak F, van Leeuwen T, Smet M . Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res. 2006; 26(1):57-77. DOI: 10.1016/j.preteyeres.2006.10.002. View

4.
Liu B, Brezinski M . Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J Biomed Opt. 2007; 12(4):044007. DOI: 10.1117/1.2753410. View

5.
Strouthidis N, WHITE E, Owen V, Ho T, Hammond C, Garway-Heath D . Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements. Br J Ophthalmol. 2005; 89(11):1427-32. PMC: 1772941. DOI: 10.1136/bjo.2005.067298. View