Chou J, Tseng P, Hu H, Yen C
Medicine (Baltimore). 2024; 103(46):e40518.
PMID: 39560596
PMC: 11575967.
DOI: 10.1097/MD.0000000000040518.
Higgins B, Cull G, Gardiner S
Invest Ophthalmol Vis Sci. 2024; 65(4):7.
PMID: 38564193
PMC: 10996942.
DOI: 10.1167/iovs.65.4.7.
Zhang Q, Zhang C, Wang Y, Cong L, Liu K, Xu Z
BMJ Open. 2024; 14(2):e079006.
PMID: 38320838
PMC: 10860037.
DOI: 10.1136/bmjopen-2023-079006.
Vilades E, Cordon B, Perez-Velilla J, Orduna E, Satue M, Polo V
PLoS One. 2023; 18(7):e0288581.
PMID: 37440532
PMC: 10343038.
DOI: 10.1371/journal.pone.0288581.
Kim M, Nam K, Hwang Y, Lee M, Lee W, Lim H
Sci Rep. 2022; 12(1):17357.
PMID: 36253380
PMC: 9576704.
DOI: 10.1038/s41598-022-22094-3.
Measurement of retinal nerve fiber layer thickness with a deep learning algorithm in ischemic optic neuropathy and optic neuritis.
Razaghi G, Hedayati E, Hejazi M, Kafieh R, Samadi M, Ritch R
Sci Rep. 2022; 12(1):17109.
PMID: 36224300
PMC: 9556618.
DOI: 10.1038/s41598-022-22135-x.
Widefield OCT Imaging for Quantifying Inner Retinal Thickness in the Nonhuman Primate.
Venkata Srinivasan V, Das S, Patel N
Transl Vis Sci Technol. 2022; 11(8):12.
PMID: 35972432
PMC: 9396678.
DOI: 10.1167/tvst.11.8.12.
Posterior corneal morphological changes in primary congenital glaucoma.
Gupta S, Mahalingam K, Singh A, Selvan H, Somarajan B, Gupta V
Indian J Ophthalmol. 2022; 70(7):2571-2577.
PMID: 35791159
PMC: 9426191.
DOI: 10.4103/ijo.IJO_317_22.
Thickness measurements taken with the spectralis OCT increase with decreasing signal strength.
Gershoni A, Barayev E, Vainer I, Allon R, Yavnieli R, Shapira Y
BMC Ophthalmol. 2022; 22(1):148.
PMID: 35365118
PMC: 8976355.
DOI: 10.1186/s12886-022-02356-4.
Clinicians' Use of Quantitative Information When Assessing the Rate of Structural Progression in Glaucoma.
Gardiner S, Kinast R, Chen T, Strouthidis N, De Moraes C, Nouri-Mahdavi K
Ophthalmol Glaucoma. 2022; 5(5):507-515.
PMID: 35144008
PMC: 9357231.
DOI: 10.1016/j.ogla.2022.02.001.
Optical coherence tomography-measured retinal nerve fiber layer thickness values compensated with a multivariate model and discrimination between stable and progressing glaucoma suspects.
Resch H, Schwarzhans F, Frommlet F, Hommer A, Fuchs P, Vass C
Graefes Arch Clin Exp Ophthalmol. 2021; 260(1):225-233.
PMID: 34350469
PMC: 8763932.
DOI: 10.1007/s00417-021-05329-3.
Fixation stability and deviation in optical coherence tomography angiography using soft contact lens correction in myopes.
Lam A, Lau K, Wong H, Lam J, Yeung M
Sci Rep. 2021; 11(1):11791.
PMID: 34083728
PMC: 8175576.
DOI: 10.1038/s41598-021-91403-z.
Neurodegeneration in systemic lupus erythematosus: layer by layer retinal study using optical coherence tomography.
Dias-Santos A, Ferreira J, Pinheiro S, Cunha J, Alves M, Papoila A
Int J Retina Vitreous. 2020; 6:15.
PMID: 32337070
PMC: 7171841.
DOI: 10.1186/s40942-020-00219-y.
AUTOMATED RETINAL LAYER SEGMENTATION AND THEIR THICKNESS PROFILES IN HEALTHY SUBJECTS: A Comparison of 55° Wide-field and Conventional 30° Spectral Domain-Optical Coherence Tomography.
Giannakaki-Zimmermann H, Munk M, Ebneter A, Wolf S, Zinkernagel M
Retina. 2019; 40(10):2004-2009.
PMID: 31834134
PMC: 7505155.
DOI: 10.1097/IAE.0000000000002714.
A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head.
Krishna Devalla S, Subramanian G, Pham T, Wang X, Perera S, Tun T
Sci Rep. 2019; 9(1):14454.
PMID: 31595006
PMC: 6783551.
DOI: 10.1038/s41598-019-51062-7.
Evaluation of the lamina cribrosa thickness and depth in patients with migraine.
Sirakaya E, Kucuk B, Agadayi A, Yilmaz N
Int Ophthalmol. 2019; 40(1):89-98.
PMID: 31432353
DOI: 10.1007/s10792-019-01160-2.
Effect of Cataract Grade according to Wide-Field Fundus Images on Measurement of Macular Thickness in Cataract Patients.
Kim M, Eom Y, Song J, Kim H
Korean J Ophthalmol. 2018; 32(3):172-181.
PMID: 29770639
PMC: 5990639.
DOI: 10.3341/kjo.2017.0067.
Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma.
Penteado R, Zangwill L, Daga F, Saunders L, Manalastas P, Shoji T
J Glaucoma. 2018; 27(6):481-489.
PMID: 29664832
PMC: 5986603.
DOI: 10.1097/IJG.0000000000000964.
Retinal layers thickness changes following epiretinal membrane surgery.
Hecht I, Yeshurun I, Bartov E, Bar A, Burgansky-Eliash Z, Achiron A
Eye (Lond). 2017; 32(3):555-562.
PMID: 29125147
PMC: 5848276.
DOI: 10.1038/eye.2017.233.
Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms.
Hou J, Veeregowda D, van de Belt-Gritter B, Busscher H, van der Mei H
Appl Environ Microbiol. 2017; 84(1).
PMID: 29054874
PMC: 5734043.
DOI: 10.1128/AEM.01516-17.