» Articles » PMID: 36203606

Identification of Immune-related Endoplasmic Reticulum Stress Genes in Sepsis Using Bioinformatics and Machine Learning

Overview
Journal Front Immunol
Date 2022 Oct 7
PMID 36203606
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Sepsis-induced apoptosis of immune cells leads to widespread depletion of key immune effector cells. Endoplasmic reticulum (ER) stress has been implicated in the apoptotic pathway, although little is known regarding its role in sepsis-related immune cell apoptosis. The aim of this study was to develop an ER stress-related prognostic and diagnostic signature for sepsis through bioinformatics and machine learning algorithms on the basis of the differentially expressed genes (DEGs) between healthy controls and sepsis patients.

Methods: The transcriptomic datasets that include gene expression profiles of sepsis patients and healthy controls were downloaded from the GEO database. The immune-related endoplasmic reticulum stress hub genes associated with sepsis patients were identified using the new comprehensive machine learning algorithm and bioinformatics analysis which includes functional enrichment analyses, consensus clustering, weighted gene coexpression network analysis (WGCNA), and protein-protein interaction (PPI) network construction. Next, the diagnostic model was established by logistic regression and the molecular subtypes of sepsis were obtained based on the significant DEGs. Finally, the potential diagnostic markers of sepsis were screened among the significant DEGs, and validated in multiple datasets.

Results: Significant differences in the type and abundance of infiltrating immune cell populations were observed between the healthy control and sepsis patients. The immune-related ER stress genes achieved strong stability and high accuracy in predicting sepsis patients. 10 genes were screened as potential diagnostic markers for sepsis among the significant DEGs, and were further validated in multiple datasets. In addition, higher expression levels of SCAMP5 mRNA and protein were observed in PBMCs isolated from sepsis patients than healthy donors (n = 5).

Conclusions: We established a stable and accurate signature to evaluate the diagnosis of sepsis based on the machine learning algorithms and bioinformatics. SCAMP5 was preliminarily identified as a diagnostic marker of sepsis that may affect its progression by regulating ER stress.

Citing Articles

Identification and experimental validation of diagnostic and prognostic genes CX3CR1, PID1 and PTGDS in sepsis and ARDS using bulk and single-cell transcriptomic analysis and machine learning.

Jiang J, Chen Y, Su Y, Zhang L, Qian H, Song X Front Immunol. 2025; 15:1480542.

PMID: 39763654 PMC: 11700820. DOI: 10.3389/fimmu.2024.1480542.


Utilizing integrated bioinformatics and machine learning approaches to elucidate biomarkers linking sepsis to purine metabolism-associated genes.

Liang F, Zheng M, Lu J, Liu P, Chen X Sci Rep. 2025; 15(1):353.

PMID: 39747316 PMC: 11696736. DOI: 10.1038/s41598-024-82998-0.


Recent nanoengineered therapeutic advancements in sepsis management.

Liu L, Li L, Wang T, Li Z, Yan B, Tan R Front Bioeng Biotechnol. 2024; 12:1495277.

PMID: 39703795 PMC: 11655211. DOI: 10.3389/fbioe.2024.1495277.


A lncRNA signature associated with endoplasmic reticulum stress supports prognostication and prediction of drug resistance in acute myelogenous leukemia.

Fu Y, Wang S, Meng L, Liu Y Transl Cancer Res. 2024; 13(11):6165-6181.

PMID: 39697706 PMC: 11651774. DOI: 10.21037/tcr-24-722.


Role of immune-related endoplasmic reticulum stress genes in sepsis-induced cardiomyopathy: Novel insights from bioinformatics analysis.

Zhen W, Zhang Y, Fu W, Fu X, Yan X PLoS One. 2024; 19(12):e0315582.

PMID: 39671358 PMC: 11642931. DOI: 10.1371/journal.pone.0315582.


References
1.
Cao S, Kaufman R . Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014; 21(3):396-413. PMC: 4076992. DOI: 10.1089/ars.2014.5851. View

2.
Wilkerson M, Hayes D . ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010; 26(12):1572-3. PMC: 2881355. DOI: 10.1093/bioinformatics/btq170. View

3.
Yu G, Wang L, Han Y, He Q . clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16(5):284-7. PMC: 3339379. DOI: 10.1089/omi.2011.0118. View

4.
Tang B, McLean A, Dawes I, Huang S, Lin R . Gene-expression profiling of peripheral blood mononuclear cells in sepsis. Crit Care Med. 2009; 37(3):882-8. DOI: 10.1097/CCM.0b013e31819b52fd. View

5.
Chong W, Shastri M, Peterson G, Patel R, Pathinayake P, Dua K . The complex interplay between endoplasmic reticulum stress and the NLRP3 inflammasome: a potential therapeutic target for inflammatory disorders. Clin Transl Immunology. 2021; 10(2):e1247. PMC: 7878118. DOI: 10.1002/cti2.1247. View