» Articles » PMID: 36202811

A Method for Multiplexed Full-length Single-molecule Sequencing of the Human Mitochondrial Genome

Abstract

Methods to reconstruct the mitochondrial DNA (mtDNA) sequence using short-read sequencing come with an inherent bias due to amplification and mapping. They can fail to determine the phase of variants, to capture multiple deletions and to cover the mitochondrial genome evenly. Here we describe a method to target, multiplex and sequence at high coverage full-length human mitochondrial genomes as native single-molecules, utilizing the RNA-guided DNA endonuclease Cas9. Combining Cas9 induced breaks, that define the mtDNA beginning and end of the sequencing reads, as barcodes, we achieve high demultiplexing specificity and delineation of the full-length of the mtDNA, regardless of the structural variant pattern. The long-read sequencing data is analysed with a pipeline where our custom-developed software, baldur, efficiently detects single nucleotide heteroplasmy to below 1%, physically determines phase and can accurately disentangle complex deletions. Our workflow is a tool for studying mtDNA variation and will accelerate mitochondrial research.

Citing Articles

Engineered mitochondria in diseases: mechanisms, strategies, and applications.

Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y Signal Transduct Target Ther. 2025; 10(1):71.

PMID: 40025039 PMC: 11873319. DOI: 10.1038/s41392-024-02081-y.


A PCR-independent approach for mtDNA enrichment and next-generation sequencing: comprehensive evaluation and clinical application.

Liang D, Zhu L, Zhu Y, Huang M, Lin Y, Li H J Transl Med. 2024; 22(1):386.

PMID: 38664838 PMC: 11044483. DOI: 10.1186/s12967-024-05213-8.


mtDNA analysis using Mitopore.

Dobner J, Nguyen T, Pavez-Giani M, Cyganek L, Distelmaier F, Krutmann J Mol Ther Methods Clin Dev. 2024; 32(2):101231.

PMID: 38572068 PMC: 10988129. DOI: 10.1016/j.omtm.2024.101231.


Novel genotype-phenotype correlations, differential cerebellar allele-specific methylation, and a common origin of the (ATTTC) insertion in spinocerebellar ataxia type 37.

Sanchez-Flores M, Corral-Juan M, Gasch-Navalon E, Cirillo D, Sanchez I, Matilla-Duenas A Hum Genet. 2024; 143(3):211-232.

PMID: 38396267 PMC: 11043136. DOI: 10.1007/s00439-024-02644-7.


Heteroplasmy and Individual Mitogene Pools: Characteristics and Potential Roles in Ecological Studies.

Wang W, Lin L, Zhang Q, Yang J, Kamili E, Chu J Biology (Basel). 2023; 12(11).

PMID: 37998051 PMC: 10669347. DOI: 10.3390/biology12111452.


References
1.
Maeda R, Kami D, Maeda H, Shikuma A, Gojo S . High throughput single cell analysis of mitochondrial heteroplasmy in mitochondrial diseases. Sci Rep. 2020; 10(1):10821. PMC: 7331593. DOI: 10.1038/s41598-020-67686-z. View

2.
Li H, Durbin R . Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26(5):589-95. PMC: 2828108. DOI: 10.1093/bioinformatics/btp698. View

3.
Poulton J, Deadman M, Gardiner R . Duplications of mitochondrial DNA in mitochondrial myopathy. Lancet. 1989; 1(8632):236-40. DOI: 10.1016/s0140-6736(89)91256-7. View

4.
Shafin K, Pesout T, Chang P, Nattestad M, Kolesnikov A, Goel S . Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat Methods. 2021; 18(11):1322-1332. PMC: 8571015. DOI: 10.1038/s41592-021-01299-w. View

5.
Gorman G, Schaefer A, Ng Y, Gomez N, Blakely E, Alston C . Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015; 77(5):753-9. PMC: 4737121. DOI: 10.1002/ana.24362. View