» Articles » PMID: 36202442

Artificial Intelligence for Radiation Oncology Applications Using Public Datasets

Overview
Specialties Oncology
Radiology
Date 2022 Oct 6
PMID 36202442
Authors
Affiliations
Soon will be listed here.
Abstract

Artificial intelligence (AI) has exceptional potential to positively impact the field of radiation oncology. However, large curated datasets - often involving imaging data and corresponding annotations - are required to develop radiation oncology AI models. Importantly, the recent establishment of Findable, Accessible, Interoperable, Reusable (FAIR) principles for scientific data management have enabled an increasing number of radiation oncology related datasets to be disseminated through data repositories, thereby acting as a rich source of data for AI model building. This manuscript reviews the current and future state of radiation oncology data dissemination, with a particular emphasis on published imaging datasets, AI data challenges, and associated infrastructure. Moreover, we provide historical context of FAIR data dissemination protocols, difficulties in the current distribution of radiation oncology data, and recommendations regarding data dissemination for eventual utilization in AI models. Through FAIR principles and standardized approaches to data dissemination, radiation oncology AI research has nothing to lose and everything to gain.

Citing Articles

Empowering cancer prevention with AI: unlocking new frontiers in prediction, diagnosis, and intervention.

Dafni M, Shih M, Manoel A, Yousif M, Spathi S, Harshal C Cancer Causes Control. 2024; .

PMID: 39672997 DOI: 10.1007/s10552-024-01942-9.


Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge.

Wahid K, Dede C, El-Habashy D, Kamel S, Rooney M, Khamis Y ArXiv. 2024; .

PMID: 39650598 PMC: 11623708.


Artificial intelligence uncertainty quantification in radiotherapy applications - A scoping review.

Wahid K, Kaffey Z, Farris D, Humbert-Vidan L, Moreno A, Rasmussen M Radiother Oncol. 2024; 201:110542.

PMID: 39299574 PMC: 11648575. DOI: 10.1016/j.radonc.2024.110542.


Application of simultaneous uncertainty quantification and segmentation for oropharyngeal cancer use-case with Bayesian deep learning.

Sahlsten J, Jaskari J, Wahid K, Ahmed S, Glerean E, He R Commun Med (Lond). 2024; 4(1):110.

PMID: 38851837 PMC: 11162474. DOI: 10.1038/s43856-024-00528-5.


Towards equitable AI in oncology.

Viswanathan V, Parmar V, Madabhushi A Nat Rev Clin Oncol. 2024; 21(8):628-637.

PMID: 38849530 DOI: 10.1038/s41571-024-00909-8.


References
1.
Fedorov A, R Longabaugh W, Pot D, Clunie D, Pieper S, Aerts H . NCI Imaging Data Commons. Cancer Res. 2021; 81(16):4188-4193. PMC: 8373794. DOI: 10.1158/0008-5472.CAN-21-0950. View

2.
Peloquin D, DiMaio M, Bierer B, Barnes M . Disruptive and avoidable: GDPR challenges to secondary research uses of data. Eur J Hum Genet. 2020; 28(6):697-705. PMC: 7411058. DOI: 10.1038/s41431-020-0596-x. View

3.
Hunter Chapman C, Gabeau D, Pinnix C, Deville Jr C, Gibbs I, Winkfield K . Why Racial Justice Matters in Radiation Oncology. Adv Radiat Oncol. 2020; 5(5):783-790. PMC: 7340406. DOI: 10.1016/j.adro.2020.06.013. View

4.
Elhalawani H, Lin T, Volpe S, Mohamed A, White A, Zafereo J . Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges. Front Oncol. 2018; 8:294. PMC: 6107800. DOI: 10.3389/fonc.2018.00294. View

5.
Aryanto K, Oudkerk M, van Ooijen P . Free DICOM de-identification tools in clinical research: functioning and safety of patient privacy. Eur Radiol. 2015; 25(12):3685-95. PMC: 4636522. DOI: 10.1007/s00330-015-3794-0. View