» Articles » PMID: 36174533

Structural Insights into the Substrate Specificity of IMP-6 and IMP-1 Metallo-β-lactamases

Overview
Journal J Biochem
Specialty Biochemistry
Date 2022 Sep 29
PMID 36174533
Authors
Affiliations
Soon will be listed here.
Abstract

IMP-type metallo-β-lactamases confer resistance to carbapenems and a broad spectrum of β-lactam antibiotics. IMP-6 and IMP-1 differ by only a point mutation: Ser262 in IMP-1 and Gly262 in IMP-6. The kcat/Km values of IMP-1 for imipenem and meropenem are nearly identical; however, for IMP-6, the kcat/Km for meropenem is 7-fold that for imipenem. In clinical practice, this may result in an ineffective therapeutic regimen and, consequently, in treatment failure. Here, we report the crystal structures of IMP-6 and IMP-1 with the same space group and similar cell constants at resolutions of 1.70 and 1.94 Å, respectively. The overall structures of IMP-6 and IMP-1 are similar. However, the loop region (residues 60-66), which participates in substrate binding, is more flexible in IMP-6 than in IMP-1. This difference in flexibility determines the substrate specificity of IMP-type metallo-β-lactamases for imipenem and meropenem. The amino acid at position 262 alters the mobility of His263; this affects the flexibility of the loop via a hydrogen bond with Pro68, which plays the role of a hinge in IMP-type metallo-β-lactamases. The substitution of Pro68 with a glycine elicited an increase in the Km of IMP-6 for imipenem, whereas the affinity for meropenem remained unchanged.

Citing Articles

Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors.

Ortega-Balleza J, Vazquez-Jimenez L, Ortiz-Perez E, Avalos-Navarro G, Paz-Gonzalez A, Lara-Ramirez E Molecules. 2024; 29(16).

PMID: 39203022 PMC: 11356879. DOI: 10.3390/molecules29163944.


Prevalence of carbapenem-resistant Enterobacterales with predominance in hospitals from 2018 to 2021 in Nara, Japan.

Kishi R, Nakano R, Nakano A, Harimoto T, Taniguchi R, Ando S JAC Antimicrob Resist. 2024; 6(4):dlae135.

PMID: 39165366 PMC: 11334064. DOI: 10.1093/jacamr/dlae135.


The interaction of the azetidine thiazole side chain with the active site loop (ASL) 3 drives the evolution of IMP metallo-β-lactamase against tebipenem.

Ono D, Cmolik A, Bethel C, Ishii Y, Drusin S, Moreno D Antimicrob Agents Chemother. 2024; 68(8):e0068724.

PMID: 39023262 PMC: 11304723. DOI: 10.1128/aac.00687-24.

References
1.
Riccio M, Franceschini N, Boschi L, Caravelli B, Cornaglia G, Fontana R . Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother. 2000; 44(5):1229-35. PMC: 89849. DOI: 10.1128/AAC.44.5.1229-1235.2000. View

2.
Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M . Plasmid-encoded metallo-beta-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother. 2001; 45(5):1343-8. PMC: 90471. DOI: 10.1128/AAC.45.5.1343-1348.2001. View

3.
Lisa M, Palacios A, Aitha M, Gonzalez M, Moreno D, Crowder M . A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat Commun. 2017; 8(1):538. PMC: 5599593. DOI: 10.1038/s41467-017-00601-9. View

4.
Ullah J, Walsh T, Taylor I, Emery D, Verma C, Gamblin S . The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. J Mol Biol. 1998; 284(1):125-36. DOI: 10.1006/jmbi.1998.2148. View

5.
King D, Worrall L, Gruninger R, Strynadka N . New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J Am Chem Soc. 2012; 134(28):11362-5. DOI: 10.1021/ja303579d. View