» Articles » PMID: 36152211

Machine Learning and Computational Chemistry for the Endocannabinoid System

Overview
Specialty Molecular Biology
Date 2022 Sep 24
PMID 36152211
Authors
Affiliations
Soon will be listed here.
Abstract

Computational methods in medicinal chemistry facilitate drug discovery and design. In particular, machine learning methodologies have recently gained increasing attention. This chapter provides a structured overview of the current state of computational chemistry and its applications for the interrogation of the endocannabinoid system (ECS), highlighting methods in structure-based drug design, virtual screening, ligand-based quantitative structure-activity relationship (QSAR) modeling, and de novo molecular design. We emphasize emerging methods in machine learning and anticipate a forecast of future opportunities of computational medicinal chemistry for the ECS.

Citing Articles

Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years.

Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett A, Hua T Pharmacol Rev. 2023; 75(5):885-958.

PMID: 37164640 PMC: 10441647. DOI: 10.1124/pharmrev.122.000600.

References
1.
Lipinski C, Hopkins A . Navigating chemical space for biology and medicine. Nature. 2004; 432(7019):855-61. DOI: 10.1038/nature03193. View

2.
Dobson C . Chemical space and biology. Nature. 2004; 432(7019):824-8. DOI: 10.1038/nature03192. View

3.
Schneider P, Walters W, Plowright A, Sieroka N, Listgarten J, Goodnow Jr R . Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2019; 19(5):353-364. DOI: 10.1038/s41573-019-0050-3. View

4.
Plowright A, Johnstone C, Kihlberg J, Pettersson J, Robb G, Thompson R . Hypothesis driven drug design: improving quality and effectiveness of the design-make-test-analyse cycle. Drug Discov Today. 2011; 17(1-2):56-62. DOI: 10.1016/j.drudis.2011.09.012. View

5.
Cristino L, Bisogno T, Di Marzo V . Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2019; 16(1):9-29. DOI: 10.1038/s41582-019-0284-z. View