» Articles » PMID: 36140636

Artificial Intelligence in Orthopedic Radiography Analysis: A Narrative Review

Overview
Specialty Radiology
Date 2022 Sep 23
PMID 36140636
Authors
Affiliations
Soon will be listed here.
Abstract

Artificial intelligence (AI) in medicine is a rapidly growing field. In orthopedics, the clinical implementations of AI have not yet reached their full potential. Deep learning algorithms have shown promising results in computed radiographs for fracture detection, classification of OA, bone age, as well as automated measurements of the lower extremities. Studies investigating the performance of AI compared to trained human readers often show equal or better results, although human validation is indispensable at the current standards. The objective of this narrative review is to give an overview of AI in medicine and summarize the current applications of AI in orthopedic radiography imaging. Due to the different AI software and study design, it is difficult to find a clear structure in this field. To produce more homogeneous studies, open-source access to AI software codes and a consensus on study design should be aimed for.

Citing Articles

Digital Age and Medicine: Visualization and Evaluation of Foot Anatomy with Artificial Intelligence.

Basgun F, Altunbey T, Ay S, Soylemez D, Emre E, Basgun N Diagnostics (Basel). 2025; 15(5).

PMID: 40075798 PMC: 11898475. DOI: 10.3390/diagnostics15050550.


Frontal plane mechanical leg alignment estimation from knee x-rays using deep learning.

Chen K, Stotter C, Lepenik C, Klestil T, Salzlechner C, Nehrer S Osteoarthr Cartil Open. 2025; 7(1):100551.

PMID: 39811691 PMC: 11729668. DOI: 10.1016/j.ocarto.2024.100551.


Interpretable Multi-Label Classification for Tibiofibula Fracture 2D CT Images with Selective Attention and Data Augmentation.

Han C, Jeong S, Kim H, Choi S, Lee K Diagnostics (Basel). 2024; 14(23).

PMID: 39682648 PMC: 11640644. DOI: 10.3390/diagnostics14232740.


Evaluation of a deep learning software for automated measurements on full-leg standing radiographs.

Lassalle L, Regnard N, Durteste M, Ventre J, Marty V, Clovis L Knee Surg Relat Res. 2024; 36(1):40.

PMID: 39614404 PMC: 11606017. DOI: 10.1186/s43019-024-00246-1.


Large Language Model Prompting Techniques for Advancement in Clinical Medicine.

Shah K, Xu A, Sharma Y, Daher M, McDonald C, Diebo B J Clin Med. 2024; 13(17).

PMID: 39274316 PMC: 11396764. DOI: 10.3390/jcm13175101.


References
1.
Dallora A, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Berglund J . Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. PLoS One. 2019; 14(7):e0220242. PMC: 6657881. DOI: 10.1371/journal.pone.0220242. View

2.
Bongers M, Thio Q, Karhade A, Stor M, Raskin K, Lozano Calderon S . Does the SORG Algorithm Predict 5-year Survival in Patients with Chondrosarcoma? An External Validation. Clin Orthop Relat Res. 2019; 477(10):2296-2303. PMC: 6999936. DOI: 10.1097/CORR.0000000000000748. View

3.
Kalmet P, Sanduleanu S, Primakov S, Wu G, Jochems A, Refaee T . Deep learning in fracture detection: a narrative review. Acta Orthop. 2020; 91(2):215-220. PMC: 7144272. DOI: 10.1080/17453674.2019.1711323. View

4.
Paixao T, DiFranco M, Ljuhar R, Ljuhar D, Goetz C, Bertalan Z . A novel quantitative metric for joint space width: data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage. 2020; 28(8):1055-1061. DOI: 10.1016/j.joca.2020.04.003. View

5.
Sage J, Gavin P . Musculoskeletal MRI. Vet Clin North Am Small Anim Pract. 2016; 46(3):421-51, v. DOI: 10.1016/j.cvsm.2015.12.003. View