6.
Ramakrishnan V, Boyd N
. The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. Tissue Eng Part B Rev. 2017; 24(4):289-299.
PMC: 6080106.
DOI: 10.1089/ten.TEB.2017.0061.
View
7.
Tran-Lundmark K, Tran P, Paulsson-Berne G, Friden V, Soininen R, Tryggvason K
. Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ Res. 2008; 103(1):43-52.
PMC: 2765377.
DOI: 10.1161/CIRCRESAHA.108.172833.
View
8.
Frerich B, Winter K, Scheller K, Braumann U
. Comparison of different fabrication techniques for human adipose tissue engineering in severe combined immunodeficient mice. Artif Organs. 2011; 36(3):227-37.
DOI: 10.1111/j.1525-1594.2011.01346.x.
View
9.
Yamashita Y, Nakada S, Yoshihara T, Nara T, Furuya N, Miida T
. Perlecan, a heparan sulfate proteoglycan, regulates systemic metabolism with dynamic changes in adipose tissue and skeletal muscle. Sci Rep. 2018; 8(1):7766.
PMC: 5958100.
DOI: 10.1038/s41598-018-25635-x.
View
10.
Langford R, Hurrion E, Dawson P
. Genetics and pathophysiology of mammalian sulfate biology. J Genet Genomics. 2017; 44(1):7-20.
DOI: 10.1016/j.jgg.2016.08.001.
View
11.
Kolset S, Salmivirta M
. Cell surface heparan sulfate proteoglycans and lipoprotein metabolism. Cell Mol Life Sci. 2001; 56(9-10):857-70.
PMC: 11146903.
DOI: 10.1007/s000180050031.
View
12.
Traktuev D, Prater D, Merfeld-Clauss S, Sanjeevaiah A, Saadatzadeh M, Murphy M
. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res. 2009; 104(12):1410-20.
DOI: 10.1161/CIRCRESAHA.108.190926.
View
13.
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S
. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol. 2020; 11:578966.
PMC: 7662468.
DOI: 10.3389/fphys.2020.578966.
View
14.
van Wijk X, van Kuppevelt T
. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis. 2013; 17(3):443-62.
DOI: 10.1007/s10456-013-9401-6.
View
15.
Zhu S, Li J, Loka R, Song Z, Vlodavsky I, Zhang K
. Modulating Heparanase Activity: Tuning Sulfation Pattern and Glycosidic Linkage of Oligosaccharides. J Med Chem. 2020; 63(8):4227-4255.
PMC: 7376576.
DOI: 10.1021/acs.jmedchem.0c00156.
View
16.
Berthod F, Germain L, Tremblay N, Auger F
. Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro. J Cell Physiol. 2006; 207(2):491-8.
DOI: 10.1002/jcp.20584.
View
17.
Pessentheiner A, Ducasa G, Gordts P
. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol. 2020; 11:769.
PMC: 7248225.
DOI: 10.3389/fimmu.2020.00769.
View
18.
Nielsen M, Brejning J, Garcia R, Zhang H, Hayden M, Vilaro S
. Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans. J Biol Chem. 1997; 272(9):5821-7.
DOI: 10.1074/jbc.272.9.5821.
View
19.
Sillat T, Saat R, Pollanen R, Hukkanen M, Takagi M, Konttinen Y
. Basement membrane collagen type IV expression by human mesenchymal stem cells during adipogenic differentiation. J Cell Mol Med. 2011; 16(7):1485-95.
PMC: 3823217.
DOI: 10.1111/j.1582-4934.2011.01442.x.
View
20.
Weng X, Maxwell-Warburton S, Hasib A, Ma L, Kang L
. The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab. 2022; 33(5):318-332.
DOI: 10.1016/j.tem.2022.02.002.
View