» Articles » PMID: 36133043

Deep Learning: a New Tool for Photonic Nanostructure Design

Overview
Journal Nanoscale Adv
Specialty Biotechnology
Date 2022 Sep 22
PMID 36133043
Authors
Affiliations
Soon will be listed here.
Abstract

Early results have shown the potential of Deep Learning (DL) to disrupt the fields of optical inverse-design, particularly, the inverse design of nanostructures. In the last three years, the complexity of the optical nanostructure being designed and the sophistication of the employed DL methodology have steadily increased. This topical review comprehensively surveys DL based design examples from the nanophotonics literature. Notwithstanding the early success of this approach, its limitations, range of validity and its place among established design techniques remain to be assessed. The review also provides a perspective on the limitations of this approach and emerging research directions. It is hoped that this topical review may help readers to identify unaddressed problems, to choose an initial setup for a specific problem, and, to identify means to improve the performance of existing DL based workflows.

Citing Articles

Enabling Fast AI-Driven Inverse Design of a Multifunctional Nanosurface by Parallel Evolution Strategies.

Chapagain A, Abuoliem D, Cho I Nanomaterials (Basel). 2025; 15(1.

PMID: 39791786 PMC: 11722515. DOI: 10.3390/nano15010027.


Advancing statistical learning and artificial intelligence in nanophotonics inverse design.

Wang Q, Makarenko M, Burguete Lopez A, Getman F, Fratalocchi A Nanophotonics. 2024; 11(11):2483-2505.

PMID: 39635678 PMC: 11502023. DOI: 10.1515/nanoph-2021-0660.


Deep learning in light-matter interactions.

Midtvedt D, Mylnikov V, Stilgoe A, Kall M, Rubinsztein-Dunlop H, Volpe G Nanophotonics. 2024; 11(14):3189-3214.

PMID: 39635557 PMC: 11501725. DOI: 10.1515/nanoph-2022-0197.


A newcomer's guide to deep learning for inverse design in nano-photonics.

Khaireh-Walieh A, Langevin D, Bennet P, Teytaud O, Moreau A, Wiecha P Nanophotonics. 2024; 12(24):4387-4414.

PMID: 39634708 PMC: 11501815. DOI: 10.1515/nanoph-2023-0527.


Inverse design of structural color: finding multiple solutions conditional generative adversarial networks.

Dai P, Sun K, Yan X, Muskens O, de Groot C, Zhu X Nanophotonics. 2024; 11(13):3057-3069.

PMID: 39634659 PMC: 11501759. DOI: 10.1515/nanoph-2022-0095.


References
1.
Mesch M, Weiss T, Schaferling M, Hentschel M, Hegde R, Giessen H . Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas-Utilization of Optimal Spectral Detuning of Fano Resonances. ACS Sens. 2018; 3(5):960-966. DOI: 10.1021/acssensors.8b00003. View

2.
Melati D, Grinberg Y, Kamandar Dezfouli M, Janz S, Cheben P, Schmid J . Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat Commun. 2019; 10(1):4775. PMC: 6803653. DOI: 10.1038/s41467-019-12698-1. View

3.
Genevet P, Capasso F . Holographic optical metasurfaces: a review of current progress. Rep Prog Phys. 2015; 78(2):024401. DOI: 10.1088/0034-4885/78/2/024401. View

4.
Jiang J, Sell D, Hoyer S, Hickey J, Yang J, Fan J . Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks. ACS Nano. 2019; 13(8):8872-8878. DOI: 10.1021/acsnano.9b02371. View

5.
Le T, Winkler D . Discovery and Optimization of Materials Using Evolutionary Approaches. Chem Rev. 2016; 116(10):6107-32. DOI: 10.1021/acs.chemrev.5b00691. View