» Articles » PMID: 36129299

Klebsiella Pneumoniae L-Fucose Metabolism Promotes Gastrointestinal Colonization and Modulates Its Virulence Determinants

Overview
Journal Infect Immun
Date 2022 Sep 21
PMID 36129299
Authors
Affiliations
Soon will be listed here.
Abstract

Colonization of the gastrointestinal (GI) tract by Klebsiella pneumoniae is generally considered asymptomatic. However, gut colonization allows K. pneumoniae to either translocate to sterile site within the same host or transmit through the fecal-oral route to another host. K. pneumoniae gut colonization is poorly understood, but knowledge of this first step toward infection and spread is critical for combatting its disease manifestations. K. pneumoniae must overcome colonization resistance (CR) provided by the host microbiota to establish itself within the gut. One such mechanism of CR is through nutrient competition. Pathogens that metabolize a broad range of substrates have the ability to bypass nutrient competition and overcome CR. Herein, we demonstrate that in response to mucin-derived fucose, the conserved fucose metabolism operon () of K. pneumoniae is upregulated in the murine gut, and we subsequently show that fucose metabolism promotes robust gut colonization. Growth studies using cecal filtrate as a proxy for the gut lumen illustrate the growth advantage that the operon provides K. pneumoniae. We further show that fucose metabolism allows K. pneumoniae to be competitive with a commensal Escherichia coli isolate (Nissle). However, Nissle is eventually able to outcompete K. pneumoniae, suggesting that it can be utilized to enhance CR. Finally, we observed that fucose metabolism positively modulates hypermucoviscosity, autoaggregation, and biofilm formation but not capsule biogenesis. Together, these insights enhance our understanding of the role of alternative carbon sources in K. pneumoniae gut colonization and the complex relationship between metabolism and virulence in this species.

Citing Articles

Profiling the gut microbiota to assess infection risk in -colonized patients.

De Maio F, Bianco D, Santarelli G, Rosato R, Monzo F, Fiori B Gut Microbes. 2025; 17(1):2468358.

PMID: 39964311 PMC: 11845061. DOI: 10.1080/19490976.2025.2468358.


Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance.

Bray A, Broberg C, Hudson A, Wu W, Nagpal R, Islam M Nat Commun. 2025; 16(1):940.

PMID: 39843522 PMC: 11754592. DOI: 10.1038/s41467-025-56309-8.


A Novel Membrane-Associated Protein Aids Bacterial Colonization of Maize.

Venkataraman M, Infante V, Sabat G, Sanos-Giles K, Ane J, Pfleger B ACS Synth Biol. 2024; 14(1):206-215.

PMID: 39707987 PMC: 11747777. DOI: 10.1021/acssynbio.4c00489.


The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications.

Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z Front Cell Infect Microbiol. 2024; 14():1413266.

PMID: 39639864 PMC: 11617537. DOI: 10.3389/fcimb.2024.1413266.


Arginine Regulates the Mucoid Phenotype of Hypervirulent .

Ring B, Shepard G, Khadka S, Holmes C, Bachman M, Mike L bioRxiv. 2024; .

PMID: 39605402 PMC: 11601523. DOI: 10.1101/2024.11.20.624485.


References
1.
Jackson D, Simecka J, Romeo T . Catabolite repression of Escherichia coli biofilm formation. J Bacteriol. 2002; 184(12):3406-10. PMC: 135108. DOI: 10.1128/JB.184.12.3406-3410.2002. View

2.
Joseph L, Merciecca T, Forestier C, Balestrino D, Miquel S . From Colonization to Dissemination: An Overview of Studies Implementing Murine Models. Microorganisms. 2021; 9(6). PMC: 8231111. DOI: 10.3390/microorganisms9061282. View

3.
Liao Y, Huang T, Chen F, Charusanti P, Hong J, Chang H . An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. J Bacteriol. 2011; 193(7):1710-7. PMC: 3067640. DOI: 10.1128/JB.01218-10. View

4.
Wang H, Yan Y, Rong D, Wang J, Wang H, Liu Z . Increased biofilm formation ability in Klebsiella pneumoniae after short-term exposure to a simulated microgravity environment. Microbiologyopen. 2016; 5(5):793-801. PMC: 5061716. DOI: 10.1002/mbo3.370. View

5.
Trunk T, Khalil H, Leo J . Bacterial autoaggregation. AIMS Microbiol. 2019; 4(1):140-164. PMC: 6605025. DOI: 10.3934/microbiol.2018.1.140. View