» Articles » PMID: 36097958

Control of Ca Signals by Astrocyte Nanoscale Morphology at Tripartite Synapses

Overview
Journal Glia
Specialty Neurology
Date 2022 Sep 13
PMID 36097958
Authors
Affiliations
Soon will be listed here.
Abstract

Much of the Ca activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so-called spongiform domain. A growing body of literature indicates that those astrocytic Ca signals can influence the activity of neuronal synapses and thus tune the flow of information through neuronal circuits. Because of technical difficulties in accessing the small spatial scale involved, the role of astrocyte morphology on Ca microdomain activity remains poorly understood. Here, we use computational tools and idealized 3D geometries of fine processes based on recent super-resolution microscopy data to investigate the mechanistic link between astrocytic nanoscale morphology and local Ca activity. Simulations demonstrate that the nano-morphology of astrocytic processes powerfully shapes the spatio-temporal properties of Ca signals and promotes local Ca activity. The model predicts that this effect is attenuated upon astrocytic swelling, hallmark of brain diseases, which we confirm experimentally in hypo-osmotic conditions. Upon repeated neurotransmitter release events, the model predicts that swelling hinders astrocytic signal propagation. Overall, this study highlights the influence of the complex morphology of astrocytes at the nanoscale and its remodeling in pathological conditions on neuron-astrocyte communication at so-called tripartite synapses, where astrocytic processes come into close contact with pre- and postsynaptic structures.

Citing Articles

Revisiting astrocytic calcium signaling in the brain.

Bai Y, Zhou Z, Han B, Xiang X, Huang W, Yao H Fundam Res. 2024; 4(6):1365-1374.

PMID: 39734522 PMC: 11670731. DOI: 10.1016/j.fmre.2023.11.021.


Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition.

Rangel-Gomez M, Alberini C, Deneen B, Drummond G, Manninen T, Sur M J Neurosci. 2024; 44(40.

PMID: 39358030 PMC: 11450529. DOI: 10.1523/JNEUROSCI.1231-24.2024.


Astrocyte regulation of extracellular space parameters across the sleep-wake cycle.

Sriram S, Carstens K, Dewing W, Fiacco T Front Cell Neurosci. 2024; 18:1401698.

PMID: 38988660 PMC: 11233815. DOI: 10.3389/fncel.2024.1401698.


Astrocyte morphology.

Baldwin K, Murai K, Khakh B Trends Cell Biol. 2024; 34(7):547-565.

PMID: 38180380 PMC: 11590062. DOI: 10.1016/j.tcb.2023.09.006.


Making time and space for calcium control of neuron activity.

Jedrzejewska-Szmek J, Dorman D, Blackwell K Curr Opin Neurobiol. 2023; 83:102804.

PMID: 37913687 PMC: 10842147. DOI: 10.1016/j.conb.2023.102804.


References
1.
Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H . Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci. 1999; 2(2):139-43. DOI: 10.1038/5692. View

2.
Cugno A, Bartol T, Sejnowski T, Iyengar R, Rangamani P . Geometric principles of second messenger dynamics in dendritic spines. Sci Rep. 2019; 9(1):11676. PMC: 6691135. DOI: 10.1038/s41598-019-48028-0. View

3.
Semyanov A, Henneberger C, Agarwal A . Making sense of astrocytic calcium signals - from acquisition to interpretation. Nat Rev Neurosci. 2020; 21(10):551-564. DOI: 10.1038/s41583-020-0361-8. View

4.
Otsu Y, Couchman K, Lyons D, Collot M, Agarwal A, Mallet J . Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci. 2014; 18(2):210-8. PMC: 4651918. DOI: 10.1038/nn.3906. View

5.
Urban N, Willig K, Hell S, Nagerl U . STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J. 2011; 101(5):1277-84. PMC: 3164186. DOI: 10.1016/j.bpj.2011.07.027. View