» Articles » PMID: 36085310

Integrating and Formatting Biomedical Data As Pre-calculated Knowledge Graph Embeddings in the Bioteque

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Sep 9
PMID 36085310
Authors
Affiliations
Soon will be listed here.
Abstract

Biomedical data is accumulating at a fast pace and integrating it into a unified framework is a major challenge, so that multiple views of a given biological event can be considered simultaneously. Here we present the Bioteque, a resource of unprecedented size and scope that contains pre-calculated biomedical descriptors derived from a gigantic knowledge graph, displaying more than 450 thousand biological entities and 30 million relationships between them. The Bioteque integrates, harmonizes, and formats data collected from over 150 data sources, including 12 biological entities (e.g., genes, diseases, drugs) linked by 67 types of associations (e.g., 'drug treats disease', 'gene interacts with gene'). We show how Bioteque descriptors facilitate the assessment of high-throughput protein-protein interactome data, the prediction of drug response and new repurposing opportunities, and demonstrate that they can be used off-the-shelf in downstream machine learning tasks without loss of performance with respect to using original data. The Bioteque thus offers a thoroughly processed, tractable, and highly optimized assembly of the biomedical knowledge available in the public domain.

Citing Articles

BioMedGraphica: An All-in-One Platform for Biomedical Prior Knowledge and Omic Signaling Graph Generation.

Zhang H, Liang S, Xu T, Li W, Huang D, Dong Y bioRxiv. 2024; .

PMID: 39713411 PMC: 11661111. DOI: 10.1101/2024.12.05.627020.


A spatial hierarchical network learning framework for drug repositioning allowing interpretation from macro to micro scale.

Ren Z, Zeng X, Lao Y, Zheng H, You Z, Xiang H Commun Biol. 2024; 7(1):1413.

PMID: 39478146 PMC: 11525566. DOI: 10.1038/s42003-024-07107-3.


Knowledge Graphs for drug repurposing: a review of databases and methods.

Perdomo-Quinteiro P, Belmonte-Hernandez A Brief Bioinform. 2024; 25(6).

PMID: 39325460 PMC: 11426166. DOI: 10.1093/bib/bbae461.


Comprehensive detection and characterization of human druggable pockets through binding site descriptors.

Comajuncosa-Creus A, Jorba G, Barril X, Aloy P Nat Commun. 2024; 15(1):7917.

PMID: 39256431 PMC: 11387482. DOI: 10.1038/s41467-024-52146-3.


Graph Artificial Intelligence in Medicine.

Johnson R, Li M, Noori A, Queen O, Zitnik M Annu Rev Biomed Data Sci. 2024; 7(1):345-368.

PMID: 38749465 PMC: 11344018. DOI: 10.1146/annurev-biodatasci-110723-024625.


References
1.
Wu G, Liu J, Yue X . Prediction of drug-disease associations based on ensemble meta paths and singular value decomposition. BMC Bioinformatics. 2019; 20(Suppl 3):134. PMC: 6439991. DOI: 10.1186/s12859-019-2644-5. View

2.
Forslund S, Chakaroun R, Zimmermann-Kogadeeva M, Marko L, Aron-Wisnewsky J, Nielsen T . Combinatorial, additive and dose-dependent drug-microbiome associations. Nature. 2021; 600(7889):500-505. DOI: 10.1038/s41586-021-04177-9. View

3.
Vitrinel B, Koh H, Mujgan Kar F, Maity S, Rendleman J, Choi H . Exploiting Interdata Relationships in Next-generation Proteomics Analysis. Mol Cell Proteomics. 2019; 18(8 suppl 1):S5-S14. PMC: 6692783. DOI: 10.1074/mcp.MR118.001246. View

4.
Zitnik M, Leskovec J . Predicting multicellular function through multi-layer tissue networks. Bioinformatics. 2017; 33(14):i190-i198. PMC: 5870717. DOI: 10.1093/bioinformatics/btx252. View

5.
Baker M . Big biology: The 'omes puzzle. Nature. 2013; 494(7438):416-9. DOI: 10.1038/494416a. View