» Articles » PMID: 36084090

Tumor Purity Adjusted Beta Values Improve Biological Interpretability of High-dimensional DNA Methylation Data

Overview
Journal PLoS One
Date 2022 Sep 9
PMID 36084090
Authors
Affiliations
Soon will be listed here.
Abstract

A common issue affecting DNA methylation analysis in tumor tissue is the presence of a substantial amount of non-tumor methylation signal derived from the surrounding microenvironment. Although approaches for quantifying and correcting for the infiltration component have been proposed previously, we believe these have not fully addressed the issue in a comprehensive and universally applicable way. We present a multi-population framework for adjusting DNA methylation beta values on the Illumina 450/850K platform using generic purity estimates to account for non-tumor signal. Our approach also provides an indirect estimate of the aggregate methylation state of the surrounding normal tissue. Using whole exome sequencing derived purity estimates and Illumina 450K methylation array data generated by The Cancer Genome Atlas project (TCGA), we provide a demonstration of this framework in breast cancer illustrating the effect of beta correction on the aggregate methylation beta value distribution, clustering accuracy, and global methylation profiles.

Citing Articles

Genomic characterization of the HER2-enriched intrinsic molecular subtype in primary ER-positive HER2-negative breast cancer.

Hohmann L, Sigurjonsdottir K, Campos A, Nacer D, Veerla S, Rosengren F Nat Commun. 2025; 16(1):2208.

PMID: 40044693 PMC: 11882987. DOI: 10.1038/s41467-025-57419-z.


Tumor purity estimated from bulk DNA methylation can be used for adjusting beta values of individual samples to better reflect tumor biology.

Sasiain I, Nacer D, Aine M, Veerla S, Staaf J NAR Genom Bioinform. 2024; 6(4):lqae146.

PMID: 39498434 PMC: 11532792. DOI: 10.1093/nargab/lqae146.


Integrative multi-omic cancer profiling reveals DNA methylation patterns associated with therapeutic vulnerability and cell-of-origin.

Liang W, Lu R, Jayasinghe R, Foltz S, Porta-Pardo E, Geffen Y Cancer Cell. 2023; 41(9):1567-1585.e7.

PMID: 37582362 PMC: 11613269. DOI: 10.1016/j.ccell.2023.07.013.

References
1.
Lauss M, Aine M, Sjodahl G, Veerla S, Patschan O, Gudjonsson S . DNA methylation analyses of urothelial carcinoma reveal distinct epigenetic subtypes and an association between gene copy number and methylation status. Epigenetics. 2012; 7(8):858-67. PMC: 3427281. DOI: 10.4161/epi.20837. View

2.
Aryee M, Jaffe A, Corrada-Bravo H, Ladd-Acosta C, Feinberg A, Hansen K . Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014; 30(10):1363-9. PMC: 4016708. DOI: 10.1093/bioinformatics/btu049. View

3.
Zhang N, Wu H, Zhang W, Wang J, Wu H, Zheng X . Predicting tumor purity from methylation microarray data. Bioinformatics. 2015; 31(21):3401-5. DOI: 10.1093/bioinformatics/btv370. View

4.
Toyota M, Ahuja N, Herman J, Baylin S, Issa J . CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999; 96(15):8681-6. PMC: 17576. DOI: 10.1073/pnas.96.15.8681. View

5.
Wainer Katsir K, Linial M . Human genes escaping X-inactivation revealed by single cell expression data. BMC Genomics. 2019; 20(1):201. PMC: 6419355. DOI: 10.1186/s12864-019-5507-6. View