Automated Reconstruction of Whole-embryo Cell Lineages by Learning from Sparse Annotations
Overview
Authors
Affiliations
We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs.
Segment Anything for Microscopy.
Archit A, Freckmann L, Nair S, Khalid N, Hilt P, Rajashekar V Nat Methods. 2025; 22(3):579-591.
PMID: 39939717 PMC: 11903314. DOI: 10.1038/s41592-024-02580-4.
4D light sheet imaging, computational reconstruction, and cell tracking in mouse embryos.
Dominguez M, Muncie-Vasic J, Bruneau B STAR Protoc. 2025; 6(1):103515.
PMID: 39754721 PMC: 11754511. DOI: 10.1016/j.xpro.2024.103515.
Spatial Statistics of Three-Dimensional Growth Dynamics of Spindle Microtubules.
Yamashita N, Morita M, Yokota H, Mimori-Kiyosue Y Methods Mol Biol. 2024; 2872:51-72.
PMID: 39616568 DOI: 10.1007/978-1-0716-4224-5_4.
Li Z, Xie D, Ma Y, Zhao C, You S, Yan H Bioinformatics. 2024; 40(11).
PMID: 39418183 PMC: 11549013. DOI: 10.1093/bioinformatics/btae626.
Ultrack: pushing the limits of cell tracking across biological scales.
Bragantini J, Theodoro I, Zhao X, Huijben T, Hirata-Miyasaki E, VijayKumar S bioRxiv. 2024; .
PMID: 39282368 PMC: 11398427. DOI: 10.1101/2024.09.02.610652.