» Articles » PMID: 36065022

Automated Reconstruction of Whole-embryo Cell Lineages by Learning from Sparse Annotations

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2022 Sep 6
PMID 36065022
Authors
Affiliations
Soon will be listed here.
Abstract

We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs.

Citing Articles

Segment Anything for Microscopy.

Archit A, Freckmann L, Nair S, Khalid N, Hilt P, Rajashekar V Nat Methods. 2025; 22(3):579-591.

PMID: 39939717 PMC: 11903314. DOI: 10.1038/s41592-024-02580-4.


4D light sheet imaging, computational reconstruction, and cell tracking in mouse embryos.

Dominguez M, Muncie-Vasic J, Bruneau B STAR Protoc. 2025; 6(1):103515.

PMID: 39754721 PMC: 11754511. DOI: 10.1016/j.xpro.2024.103515.


Spatial Statistics of Three-Dimensional Growth Dynamics of Spindle Microtubules.

Yamashita N, Morita M, Yokota H, Mimori-Kiyosue Y Methods Mol Biol. 2024; 2872:51-72.

PMID: 39616568 DOI: 10.1007/978-1-0716-4224-5_4.


Deep learning-based enhancement of fluorescence labeling for accurate cell lineage tracing during embryogenesis.

Li Z, Xie D, Ma Y, Zhao C, You S, Yan H Bioinformatics. 2024; 40(11).

PMID: 39418183 PMC: 11549013. DOI: 10.1093/bioinformatics/btae626.


Ultrack: pushing the limits of cell tracking across biological scales.

Bragantini J, Theodoro I, Zhao X, Huijben T, Hirata-Miyasaki E, VijayKumar S bioRxiv. 2024; .

PMID: 39282368 PMC: 11398427. DOI: 10.1101/2024.09.02.610652.