The Geometry of Evolved Community Matrix Spectra
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
Random matrix theory has been applied to food web stability for decades, implying elliptical eigenvalue spectra and that large food webs should be unstable. Here we allow feasible food webs to self-assemble within an evolutionary process, using simple Lotka-Volterra equations and several elementary interaction types. We show that, as complex food webs evolve under [Formula: see text] invasion attempts, the community matrix spectra become bi-modal, rather than falling onto elliptical geometries. Our results raise questions as to the applicability of random matrix theory to the analysis of food web steady states.
References
1.
Servan C, Capitan J, Grilli J, Morrison K, Allesina S
. Coexistence of many species in random ecosystems. Nat Ecol Evol. 2018; 2(8):1237-1242.
DOI: 10.1038/s41559-018-0603-6.
View
2.
Lassig M, Bastolla U, Manrubia S, Valleriani A
. Shape of ecological networks. Phys Rev Lett. 2001; 86(19):4418-21.
DOI: 10.1103/PhysRevLett.86.4418.
View
3.
Loreau M, de Mazancourt C
. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett. 2013; 16 Suppl 1:106-15.
DOI: 10.1111/ele.12073.
View
4.
Barabas G, Michalska-Smith M, Allesina S
. Self-regulation and the stability of large ecological networks. Nat Ecol Evol. 2017; 1(12):1870-1875.
DOI: 10.1038/s41559-017-0357-6.
View
5.
Johnson S, Dominguez-Garcia V, Donetti L, Munoz M
. Trophic coherence determines food-web stability. Proc Natl Acad Sci U S A. 2014; 111(50):17923-8.
PMC: 4273378.
DOI: 10.1073/pnas.1409077111.
View