» Articles » PMID: 36011301

New Insights into the Functions of MicroRNAs in Cardiac Fibrosis: From Mechanisms to Therapeutic Strategies

Overview
Journal Genes (Basel)
Publisher MDPI
Date 2022 Aug 26
PMID 36011301
Authors
Affiliations
Soon will be listed here.
Abstract

Cardiac fibrosis is a significant global health problem associated with almost all types of heart disease. Extensive cardiac fibrosis reduces tissue compliance and contributes to adverse outcomes, such as cardiomyocyte hypertrophy, cardiomyocyte apoptosis, and even heart failure. It is mainly associated with pathological myocardial remodeling, characterized by the excessive deposition of extracellular matrix (ECM) proteins in cardiac parenchymal tissues. In recent years, a growing body of evidence demonstrated that microRNAs (miRNAs) have a crucial role in the pathological development of cardiac fibrosis. More than sixty miRNAs have been associated with the progression of cardiac fibrosis. In this review, we summarized potential miRNAs and miRNAs-related regulatory mechanisms for cardiac fibrosis and discussed the potential clinical application of miRNAs in cardiac fibrosis.

Citing Articles

Regulation of idiopathic pulmonary fibrosis: a cross-talk between TGF- signaling and MicroRNAs.

Wang S, Yu H, Liu S, Liu Y, Gu X Front Med (Lausanne). 2024; 11:1415278.

PMID: 39386739 PMC: 11461268. DOI: 10.3389/fmed.2024.1415278.


Endoplasmic reticulum stress signaling modulates ischemia/reperfusion injury in the aged heart by regulating mitochondrial maintenance.

Zhang J, Zhao Y, Gong N Mol Med. 2024; 30(1):107.

PMID: 39044180 PMC: 11265325. DOI: 10.1186/s10020-024-00869-w.


Unraveling the Cardiac Matrix: From Diabetes to Heart Failure, Exploring Pathways and Potential Medications.

Tudurachi B, Anghel L, Tudurachi A, Sascau R, Zanfirescu R, Statescu C Biomedicines. 2024; 12(6).

PMID: 38927520 PMC: 11201699. DOI: 10.3390/biomedicines12061314.


MicroRNA-452-5p regulates fibrogenesis via targeting TGF-β/SMAD4 axis in SCN5A-knockdown human cardiac fibroblasts.

Mushtaq I, Hsieh T, Chen Y, Kao Y, Chen Y iScience. 2024; 27(6):110084.

PMID: 38883840 PMC: 11179076. DOI: 10.1016/j.isci.2024.110084.


Biomarkers of chemotherapy-induced cardiotoxicity: toward precision prevention using extracellular vesicles.

Silver B, Kreutz A, Weick M, Gerrish K, Tokar E Front Oncol. 2024; 14:1393930.

PMID: 38706609 PMC: 11066856. DOI: 10.3389/fonc.2024.1393930.


References
1.
Frangogiannis N . Cardiac fibrosis. Cardiovasc Res. 2020; 117(6):1450-1488. PMC: 8152700. DOI: 10.1093/cvr/cvaa324. View

2.
Wang L, Jiang P, He Y, Hu H, Guo Y, Liu X . A novel mechanism of Smads/miR-675/TGFβR1 axis modulating the proliferation and remodeling of mouse cardiac fibroblasts. J Cell Physiol. 2019; 234(11):20275-20285. DOI: 10.1002/jcp.28628. View

3.
Nonaka C, Sampaio G, Silva K, Khouri R, Macedo C, Chagas Translational Research Consortium . Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease. Int J Mol Sci. 2021; 22(7). PMC: 8036348. DOI: 10.3390/ijms22073307. View

4.
Seo H, Lee S, Lee C, Lee J, Shin S, Song B . Multipoint targeting of TGF-β/Wnt transactivation circuit with microRNA 384-5p for cardiac fibrosis. Cell Death Differ. 2018; 26(6):1107-1123. PMC: 6748152. DOI: 10.1038/s41418-018-0187-3. View

5.
Schulte C, Westermann D, Blankenberg S, Zeller T . Diagnostic and prognostic value of circulating microRNAs in heart failure with preserved and reduced ejection fraction. World J Cardiol. 2016; 7(12):843-60. PMC: 4691811. DOI: 10.4330/wjc.v7.i12.843. View