» Articles » PMID: 35304600

Non-canonical Features of MicroRNAs: Paradigms Emerging from Cardiovascular Disease

Overview
Journal Nat Rev Cardiol
Date 2022 Mar 19
PMID 35304600
Authors
Affiliations
Soon will be listed here.
Abstract

Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.

Citing Articles

The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review).

Kozlov D, Rodimova S, Kuznetsova D Sovrem Tekhnologii Med. 2025; 15(5):54-79.

PMID: 39967915 PMC: 11832066. DOI: 10.17691/stm2023.15.5.06.


Diabetes mellitus disrupts lncRNA Malat1 regulation of cardiac mitochondrial genome-encoded protein expression.

Taylor A, Hathaway Q, Meadows E, Durr A, Kunovac A, Pinti M Am J Physiol Heart Circ Physiol. 2024; 327(6):H1503-H1518.

PMID: 39453425 PMC: 11684948. DOI: 10.1152/ajpheart.00607.2024.


Epigenetics in the formation of pathological aggregates in amyotrophic lateral sclerosis.

Noches V, Campos-Melo D, Droppelmann C, Strong M Front Mol Neurosci. 2024; 17:1417961.

PMID: 39290830 PMC: 11405384. DOI: 10.3389/fnmol.2024.1417961.


Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses.

Chauhan P, Pramodh S, Hussain A, Elsori D, Lakhanpal S, Kumar R Front Cell Dev Biol. 2024; 12:1397945.

PMID: 39263322 PMC: 11387185. DOI: 10.3389/fcell.2024.1397945.


LncRNA H19 Promotes Gastric Cancer Metastasis via miR-148-3p/SOX-12 Axis.

Zhang X, Wang G, Li X, Liu Y, Wu X, Zhou Y Anal Cell Pathol (Amst). 2024; 2024:6217134.

PMID: 39184399 PMC: 11344645. DOI: 10.1155/2024/6217134.


References
1.
Bartel D . Metazoan MicroRNAs. Cell. 2018; 173(1):20-51. PMC: 6091663. DOI: 10.1016/j.cell.2018.03.006. View

2.
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T . Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004; 15(2):185-97. DOI: 10.1016/j.molcel.2004.07.007. View

3.
Park M, Phan H, Busch F, Hinckley S, Brackbill J, Wysocki V . Human Argonaute3 has slicer activity. Nucleic Acids Res. 2017; 45(20):11867-11877. PMC: 5714244. DOI: 10.1093/nar/gkx916. View

4.
Shin C, Nam J, Farh K, Chiang H, Shkumatava A, Bartel D . Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell. 2010; 38(6):789-802. PMC: 2942757. DOI: 10.1016/j.molcel.2010.06.005. View

5.
Hansen T, Wiklund E, Bramsen J, Villadsen S, Statham A, Clark S . miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011; 30(21):4414-22. PMC: 3230379. DOI: 10.1038/emboj.2011.359. View