The Interplay Between Telomeres, Mitochondria, and Chronic Stress Exposure in the Aging Egg
Overview
Biophysics
Cell Biology
Molecular Biology
Affiliations
While at the organismal level, biological aging can be estimated by telomere length and DNA methylation signatures, reliable biomarkers that can predict reproductive age are much needed to gauge the quality of an oocyte. Reproductive medicine and fertility centers often merely quantitate the ovarian reserve to predict the likelihood of fertilization and pregnancy in women of advanced reproductive age. It is highly important to address the level of age-related decline in oocyte quality since it leads to an increased risk of miscarriages and aneuploidy. Conversely, the pathways behind oocyte aging remain, in large part, elusive. Telomere shortening upon chronic stress exposure regulates mitochondria function and biogenesis by various pathways; therefore, establishing a link between these two important players and extrapolating them for the aging of oocytes will be the purpose of our commentary.
Van Der Kelen A, Li Piani L, Mertens J, Regin M, Couvreu de Deckersberg E, Van de Velde H Hum Reprod Open. 2025; 2025(1):hoae074.
PMID: 39830711 PMC: 11739621. DOI: 10.1093/hropen/hoae074.
Theodorakis N, Feretzakis G, Tzelves L, Paxinou E, Hitas C, Vamvakou G J Pers Med. 2024; 14(9).
PMID: 39338186 PMC: 11433587. DOI: 10.3390/jpm14090931.
Telomeres and SIRT1 as Biomarkers of Gamete Oxidative Stress, Fertility, and Potential IVF Outcome.
Panczyszyn A, Boniewska-Bernacka E, Wertel I, Sadakierska-Chudy A, Goc A Int J Mol Sci. 2024; 25(16).
PMID: 39201341 PMC: 11354255. DOI: 10.3390/ijms25168652.
Zhu L, Lin Z, Liu Y, Sun H, Sun C, Chen F Sichuan Da Xue Xue Bao Yi Xue Ban. 2024; 55(3):588-595.
PMID: 38948296 PMC: 11211781. DOI: 10.12182/20240560205.
Cozzolino M, Ergun Y, Ristori E, Garg A, Imamoglu G, Seli E Aging (Albany NY). 2024; 16(3):2047-2060.
PMID: 38349865 PMC: 10911389. DOI: 10.18632/aging.205543.