» Articles » PMID: 35996438

Quantitative Acoustophoresis

Overview
Journal ACS Nanosci Au
Specialty Biotechnology
Date 2022 Aug 23
PMID 35996438
Authors
Affiliations
Soon will be listed here.
Abstract

Studying cellular mechanics allows important insights into its cytoskeletal composition, developmental stage, and health. While many force spectroscopy assays exist that allow probing of mechanics of bioparticles, most of them require immobilization of and direct contact with the particle and can only measure a single particle at a time. Here, we introduce quantitative acoustophoresis (QAP) as a simple alternative that uses an acoustic standing wave field to directly determine cellular compressibility and density of many cells simultaneously in a contact-free manner. First, using polymeric spheres of different sizes and materials, we verify that our assay data follow the standard acoustic theory with great accuracy. We furthermore verify that our technique not only is able to measure compressibilities of living cells but can also sense an artificial cytoskeleton inside a biomimetic vesicle. We finally provide a thorough discussion about the expected accuracy our approach provides. To conclude, we show that compared to existing methods, our QAP assay provides a simple yet powerful alternative to study the mechanics of biological and biomimetic particles.

Citing Articles

Viscoelasticity of diverse biological samples quantified by Acoustic Force Microrheology (AFMR).

Bergamaschi G, Taris K, Biebricher A, Seymonson X, Witt H, Peterman E Commun Biol. 2024; 7(1):683.

PMID: 38834871 PMC: 11150513. DOI: 10.1038/s42003-024-06367-3.


Microparticles with tunable, cell-like properties for quantitative acoustic mechanophenotyping.

Dubay R, Darling E, Fiering J Microsyst Nanoeng. 2023; 9():90.

PMID: 37448969 PMC: 10336031. DOI: 10.1038/s41378-023-00556-6.

References
1.
Hochmuth R . Micropipette aspiration of living cells. J Biomech. 1999; 33(1):15-22. DOI: 10.1016/s0021-9290(99)00175-x. View

2.
Van de Cauter L, Fanalista F, van Buren L, De Franceschi N, Godino E, Bouw S . Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles. ACS Synth Biol. 2021; 10(7):1690-1702. PMC: 8291763. DOI: 10.1021/acssynbio.1c00068. View

3.
Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang P . Acoustic separation of circulating tumor cells. Proc Natl Acad Sci U S A. 2015; 112(16):4970-5. PMC: 4413297. DOI: 10.1073/pnas.1504484112. View

4.
van Loenhout M, Kerssemakers J, De Vlaminck I, Dekker C . Non-bias-limited tracking of spherical particles, enabling nanometer resolution at low magnification. Biophys J. 2012; 102(10):2362-71. PMC: 3353059. DOI: 10.1016/j.bpj.2012.03.073. View

5.
Nguyen A, Brandt M, Muenker T, Betz T . Multi-oscillation microrheology acoustic force spectroscopy enables frequency-dependent measurements on endothelial cells at high-throughput. Lab Chip. 2021; 21(10):1929-1947. PMC: 8130676. DOI: 10.1039/d0lc01135e. View