» Articles » PMID: 35996369

Computational Photon Counting Using Multithreshold Peak Detection for Fast Fluorescence Lifetime Imaging Microscopy

Overview
Journal ACS Photonics
Date 2022 Aug 23
PMID 35996369
Authors
Affiliations
Soon will be listed here.
Abstract

Time-resolved photon counting methods have a finite bandwidth that restricts the acquisition speed of techniques like fluorescence lifetime imaging microscopy (FLIM). To enable faster imaging, computational methods can be employed to count photons when the output of a detector is directly digitized at a high sampling rate. Here, we present computational photon counting using a hybrid photodetector in conjunction with multithreshold peak detection to count instances where one or more photons arrive at the detector within the detector response time. This method can be used to distinguish up to five photon counts per digitized point, whereas previous demonstrations of computational photon counting on data acquired with photomultiplier tubes have only counted one photon at a time. We demonstrate in both freely moving and a human breast cancer cell line undergoing apoptosis that this novel multithreshold peak detection method can accurately characterize the intensity and fluorescence lifetime of samples producing photon rates up to 223%, higher than previously demonstrated photon counting FLIM systems.

Citing Articles

Pixelation with concentration-encoded effective photons for quantitative molecular optical sectioning microscopy.

Wang G, Iyer R, Sorrells J, Aksamitiene E, Chaney E, Renteria C Laser Photon Rev. 2025; 18(10.

PMID: 39781104 PMC: 11706540. DOI: 10.1002/lpor.202400031.


Endogenous mitochondrial NAD(P)H fluorescence can predict lifespan.

Morrow C, Yao P, Vergani-Junior C, Anekal P, Montero Llopis P, Miller J Commun Biol. 2024; 7(1):1551.

PMID: 39572679 PMC: 11582643. DOI: 10.1038/s42003-024-07243-w.


Metabolic light absorption, scattering, and emission (MetaLASE) microscopy.

Restall B, Haven N, Martell M, Cikaluk B, Wang J, Kedarisetti P Sci Adv. 2024; 10(42):eadl5729.

PMID: 39423271 PMC: 11488571. DOI: 10.1126/sciadv.adl5729.


Inspiring a convergent engineering approach to measure and model the tissue microenvironment.

Iyer R, Applegate C, Arogundade O, Bangru S, Berg I, Emon B Heliyon. 2024; 10(12):e32546.

PMID: 38975228 PMC: 11226808. DOI: 10.1016/j.heliyon.2024.e32546.


Analog multiplexing of a laser clock and computational photon counting for fast fluorescence lifetime imaging microscopy.

Iyer R, Sorrells J, Tan K, Yang L, Wang G, Tu H Biomed Opt Express. 2024; 15(4):2048-2062.

PMID: 38633095 PMC: 11019682. DOI: 10.1364/BOE.514813.


References
1.
Dow X, Sullivan S, Muir R, Simpson G . Video-rate two-photon excited fluorescence lifetime imaging system with interleaved digitization. Opt Lett. 2015; 40(14):3296-9. PMC: 4756458. DOI: 10.1364/OL.40.003296. View

2.
Isbaner S, Karedla N, Ruhlandt D, Stein S, Chizhik A, Gregor I . Dead-time correction of fluorescence lifetime measurements and fluorescence lifetime imaging. Opt Express. 2016; 24(9):9429-45. DOI: 10.1364/OE.24.009429. View

3.
Michalet X, Cheng A, Antelman J, Suyama M, Arisaka K, Weiss S . Hybrid photodetector for single-molecule spectroscopy and microscopy. Proc SPIE Int Soc Opt Eng. 2011; 6862(68620F). PMC: 3150536. DOI: 10.1117/12.763449. View

4.
Yang L, Park J, Marjanovic M, Chaney E, Spillman Jr D, Phillips H . Intraoperative Label-Free Multimodal Nonlinear Optical Imaging for Point-of-Procedure Cancer Diagnostics. IEEE J Sel Top Quantum Electron. 2021; 27(4). PMC: 7978401. DOI: 10.1109/jstqe.2021.3054578. View

5.
Bruschini C, Homulle H, Antolovic I, Burri S, Charbon E . Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci Appl. 2019; 8:87. PMC: 6804596. DOI: 10.1038/s41377-019-0191-5. View