» Articles » PMID: 35992068

Non-coding RNA Delivery for Bone Tissue Engineering: Progress, Challenges, and Potential Solutions

Overview
Journal iScience
Publisher Cell Press
Date 2022 Aug 22
PMID 35992068
Authors
Affiliations
Soon will be listed here.
Abstract

More than 20 million individuals worldwide suffer from congenital or acquired bone defects annually. The development of bone scaffold materials that simulate natural bone for bone defect repair remains challenging. Recently, ncRNA-based therapies for bone defects have attracted increasing interest because of the great potential of ncRNAs in disease treatment. Various types of ncRNAs regulate gene expression in osteogenesis-related cells via multiple mechanisms. The delivery of ncRNAs to the site of bone loss through gene vectors or scaffolds is a potential therapeutic option for bone defect repair. Therefore, this study discusses and summarizes the regulatory mechanisms of miRNAs, siRNAs, and piRNAs in osteogenic signaling and reviews the widely used current RNA delivery vectors and scaffolds for bone defect repair. Additionally, current challenges and potential solutions of delivery scaffolds for bone defect repair are proposed, with the aim of providing a theoretical basis for their future clinical applications.

Citing Articles

Integrating Micro- and Nanostructured Platforms and Biological Drugs to Enhance Biomaterial-Based Bone Regeneration Strategies.

Shah S, Sohail M, Nakielski P, Rinoldi C, Zargarian S, Kosik-Koziol A Biomacromolecules. 2024; 26(1):140-162.

PMID: 39621708 PMC: 11733931. DOI: 10.1021/acs.biomac.4c01133.


Current advances in the development of microRNA-integrated tissue engineering strategies: a cornerstone of regenerative medicine.

Castanon-Cortes L, Bravo-Vazquez L, Santoyo-Valencia G, Medina-Feria S, Sahare P, Duttaroy A Front Bioeng Biotechnol. 2024; 12:1484151.

PMID: 39479296 PMC: 11521876. DOI: 10.3389/fbioe.2024.1484151.


Noncoding RNAs: the crucial role of programmed cell death in osteoporosis.

Han J, Zhu Y, Zhang J, Kapilevich L, Zhang X Front Cell Dev Biol. 2024; 12:1409662.

PMID: 38799506 PMC: 11116712. DOI: 10.3389/fcell.2024.1409662.


Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review.

Damiati L, El Soury M Front Med (Lausanne). 2024; 11:1386683.

PMID: 38690172 PMC: 11059066. DOI: 10.3389/fmed.2024.1386683.


BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification.

Avila Santos A, de Almeida B, Bonidia R, Stadler P, Stefanic P, Mandic-Mulec I RNA Biol. 2024; 21(1):1-12.

PMID: 38528797 PMC: 10968306. DOI: 10.1080/15476286.2024.2329451.


References
1.
Wei S, Ma J, Xu L, Gu X, Ma X . Biodegradable materials for bone defect repair. Mil Med Res. 2020; 7(1):54. PMC: 7653714. DOI: 10.1186/s40779-020-00280-6. View

2.
Liu J, Chen M, Ma L, Dang X, Du G . piRNA-36741 regulates BMP2-mediated osteoblast differentiation via METTL3 controlled m6A modification. Aging (Albany NY). 2021; 13(19):23361-23375. PMC: 8544320. DOI: 10.18632/aging.203630. View

3.
Li Y, Chen G, He Y, Yi C, Zhang X, Zeng B . Selenomethionine-Modified Polyethylenimine-Based Nanoparticles Loaded with miR-132-3p Inhibitor-Biofunctionalized Titanium Implants for Improved Osteointegration. ACS Biomater Sci Eng. 2021; 7(10):4933-4945. DOI: 10.1021/acsbiomaterials.1c00880. View

4.
Zhang Y, Gao Y, Cai L, Li F, Lou Y, Xu N . MicroRNA-221 is involved in the regulation of osteoporosis through regulates RUNX2 protein expression and osteoblast differentiation. Am J Transl Res. 2017; 9(1):126-135. PMC: 5250709. View

5.
Kato C, Kojima T, Komaki M, Mimori K, Duarte W, Takenaga K . S100A4 inhibition by RNAi up-regulates osteoblast related genes in periodontal ligament cells. Biochem Biophys Res Commun. 2004; 326(1):147-53. DOI: 10.1016/j.bbrc.2004.11.010. View