» Articles » PMID: 35970821

Parametric Longitudinal Coupling Between a High-impedance Superconducting Resonator and a Semiconductor Quantum Dot Singlet-triplet Spin Qubit

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Aug 15
PMID 35970821
Authors
Affiliations
Soon will be listed here.
Abstract

Coupling qubits to a superconducting resonator provides a mechanism to enable long-distance entangling operations in a quantum computer based on spins in semiconducting materials. Here, we demonstrate a controllable spin-photon coupling based on a longitudinal interaction between a spin qubit and a resonator. We show that coupling a singlet-triplet qubit to a high-impedance superconducting resonator can produce the desired longitudinal coupling when the qubit is driven near the resonator's frequency. We measure the energy splitting of the qubit as a function of the drive amplitude and frequency of a microwave signal applied near the resonator antinode, revealing pronounced effects close to the resonator frequency due to longitudinal coupling. By tuning the amplitude of the drive, we reach a regime with longitudinal coupling exceeding 1 MHz. This mechanism for qubit-resonator coupling represents a stepping stone towards producing high-fidelity two-qubit gates mediated by a superconducting resonator.

Citing Articles

Cavity-mediated iSWAP oscillations between distant spins.

Dijkema J, Xue X, Harvey-Collard P, Rimbach-Russ M, de Snoo S, Zheng G Nat Phys. 2025; 21(1):168-174.

PMID: 39846006 PMC: 11746143. DOI: 10.1038/s41567-024-02694-8.


A singlet-triplet hole-spin qubit in MOS silicon.

Liles S, Halverson D, Wang Z, Shamim A, Eggli R, Jin I Nat Commun. 2024; 15(1):7690.

PMID: 39227367 PMC: 11372177. DOI: 10.1038/s41467-024-51902-9.


Strong coupling between a microwave photon and a singlet-triplet qubit.

Ungerer J, Pally A, Kononov A, Lehmann S, Ridderbos J, Potts P Nat Commun. 2024; 15(1):1068.

PMID: 38316779 PMC: 10844229. DOI: 10.1038/s41467-024-45235-w.

References
1.
Yoneda J, Huang W, Feng M, Yang C, Chan K, Tanttu T . Coherent spin qubit transport in silicon. Nat Commun. 2021; 12(1):4114. PMC: 8257656. DOI: 10.1038/s41467-021-24371-7. View

2.
Landig A, Koski J, Scarlino P, Muller C, Abadillo-Uriel J, Kratochwil B . Virtual-photon-mediated spin-qubit-transmon coupling. Nat Commun. 2019; 10(1):5037. PMC: 6834620. DOI: 10.1038/s41467-019-13000-z. View

3.
Medford J, Cywinski L, Barthel C, Marcus C, Hanson M, Gossard A . Scaling of dynamical decoupling for spin qubits. Phys Rev Lett. 2012; 108(8):086802. DOI: 10.1103/PhysRevLett.108.086802. View

4.
Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U . Strong spin-photon coupling in silicon. Science. 2018; 359(6380):1123-1127. DOI: 10.1126/science.aar4054. View

5.
Landig A, Koski J, Scarlino P, Mendes U, Blais A, Reichl C . Coherent spin-photon coupling using a resonant exchange qubit. Nature. 2018; 560(7717):179-184. DOI: 10.1038/s41586-018-0365-y. View