» Articles » PMID: 31695044

Virtual-photon-mediated Spin-qubit-transmon Coupling

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Nov 8
PMID 31695044
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Spin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary that integrates and controllably couples both qubit types on the same chip over a distance that is several orders of magnitude longer than the physical size of the spin qubit. We realize such a link with a frequency-tunable high impedance SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting qubits on the same chip. We spectroscopically observe coherent interaction between the resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the interaction is mediated either by real or virtual resonator photons.

Citing Articles

High-impedance microwave resonators with two-photon nonlinear effects.

Andersson S, Havir H, Ranni A, Haldar S, Maisi V Nat Commun. 2025; 16(1):552.

PMID: 39788991 PMC: 11718305. DOI: 10.1038/s41467-025-55860-8.


Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe.

Struck T, Volmer M, Visser L, Offermann T, Xue R, Tu J Nat Commun. 2024; 15(1):1325.

PMID: 38351007 PMC: 10864332. DOI: 10.1038/s41467-024-45583-7.


A Microwave Differential Dielectric Sensor Based on Mode Splitting of Coupled Resonators.

Almuhlafi A, Alshaykh M, Alajmi M, Alshammari B, Ramahi O Sensors (Basel). 2024; 24(3).

PMID: 38339739 PMC: 10857766. DOI: 10.3390/s24031020.


Analytically Solvable Model for Qubit-Mediated Energy Transfer between Quantum Batteries.

Crescente A, Ferraro D, Carrega M, Sassetti M Entropy (Basel). 2023; 25(5).

PMID: 37238512 PMC: 10217090. DOI: 10.3390/e25050758.


Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit.

Bottcher C, Harvey S, Fallahi S, Gardner G, Manfra M, Vool U Nat Commun. 2022; 13(1):4773.

PMID: 35970821 PMC: 9378792. DOI: 10.1038/s41467-022-32236-w.


References
1.
Petta J, Johnson A, Taylor J, Laird E, Yacoby A, Lukin M . Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science. 2005; 309(5744):2180-4. DOI: 10.1126/science.1116955. View

2.
Schuster D, Wallraff A, Blais A, Frunzio L, Huang R, Majer J . ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys Rev Lett. 2005; 94(12):123602. DOI: 10.1103/PhysRevLett.94.123602. View

3.
Veldhorst M, Hwang J, Yang C, Leenstra A, de Ronde B, Dehollain J . An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat Nanotechnol. 2014; 9(12):981-5. DOI: 10.1038/nnano.2014.216. View

4.
Koppens F, Buizert C, Tielrooij K, Vink I, Nowack K, Meunier T . Driven coherent oscillations of a single electron spin in a quantum dot. Nature. 2006; 442(7104):766-71. DOI: 10.1038/nature05065. View

5.
DiCarlo L, Chow J, Gambetta J, Bishop L, Johnson B, Schuster D . Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature. 2009; 460(7252):240-4. DOI: 10.1038/nature08121. View